


Quantum Biocomputing in Quantum Biology 
Volume II



Hafiz Md. Hasan Babu 

Quantum Biocomputing 
in Quantum Biology 
Volume II 
Memory Devices, Programmable Logic 
Devices, Nanoprocessors, Heat, Speed, 
and Data Related Issues



Hafiz Md. Hasan Babu 
Department of Computer Science 
and Engineering 
University of Dhaka 
Dhaka, Bangladesh 

ISBN 978-981-97-5348-2 ISBN 978-981-97-5349-9 (eBook) 
https://doi.org/10.1007/978-981-97-5349-9 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Singapore Pte Ltd. 2025 

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. 
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, 
Singapore 

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-981-97-5349-9


To my respected great parents and also to my 
lovely wife, daughter, and son who made me 
possible to write this book



Preface 

Quantum biology is the field of study that investigates processes in living organisms 
that cannot be accurately described by the classical laws of physics. This means 
that quantum theory has to be applied to understand those processes. All matter, 
including living matter, is subject to the laws of physics. Biology and biological 
processes often deal with electrons and protons that are continuously being trans-
ferred between different parts of a cell or a macromolecular system. These transfer 
processes can only take place when the system exchanges energy with its environment 
in the form of molecular vibrations and phonons. Such a system is called an ‘open 
quantum system’, and special physical laws apply to it. Good examples of biological 
processes in which quantum effects are visible are the transport of electrons and 
protons in photosynthesis, respiration, vision, catalysis, olfaction, and in basically 
every other biological transport process. Further examples include the transfer of 
electronic and/or vibrational energy, and magnetic field effects in electron transfer 
and bird migration. Without the laws of quantum mechanics, we cannot understand 
life and life processes. The challenge is to understand how in a wet and noisy envi-
ronment (such as a protein, a membrane, a cell, and an entire organism) the ‘perfect’ 
laws of quantum physics survive. In the near future we will see new experiments that 
will study, for example, the effects of strong magnetic fields, single molecule/system 
analysis, and femtosecond coherent microscopy. One challenge is to understand how 
quantum effects, clearly present at some level of functional description, translate 
into observations at a higher level of complexity. We will see new systems being 
investigated, such as neurons, neural networks, and maybe the entire brain. We will 
see a closer connection between our further understanding of life, and our under-
standing of quantum informatics, quantum computing, artificial intelligence, and 
various other technologies. Computing in Quantum Biology is the combination of 
quantum computing and DNA computing which is introduced here for the first time. 
This is a new platform for the computing system, which consists of a combination of 
quantum computing and DNA computing—it can be called the cross-platform system 
of quantum and DNA computing which can be done in two ways, namely, “quantum-
DNA computing or quantum biocomputing or quantum biological computing” 
and “DNA-quantum computing or bioquantum computing or biological quantum

vii



viii Preface

computing” The book “Quantum Biocomputing: Computing in Quantum Biol-
ogy” starts with the basics of Quantum Computing, Biocomputing, Quantum-DNA 
Computing, and DNA-Quantum Computing in Volume I. Volume I discussed the 
fundamental operations in quantum computing, different types of quantum arithmetic 
circuits, fundamental operations in biocomputing, DNA arithmetic circuits, quantum-
DNA arithmetic circuits, and DNA-quantum arithmetic circuits such as basic and 
universal gate operations, half-adder, full-adder, half subtractor, full subtractor, N-
qubit adders, multipliers, and dividers. Different quantum and DNA combinational 
circuits, such as quantum, quantum-DNA and DNA-quantum encoder, decoder, 
multiplexer, and demultiplexer, have also been discussed in Volume I of this book. 
Different types of sequential circuits, such as SR-latch, SR flip-flop, D flip-flop, T 
flip-flop, JK flip-flop, shift register, ripple counter, synchronous counter in quantum, 
quantum-DNA, and DNA-quantum computing. Computing in quantum biology 
means all logical computations in quantum-DNA and DNA-quantum computing 
modes. This volume (Volume II) will discuss the architecture and applications of 
different types of memory devices, such as Random-Access Memory (RAM), Read-
Only Memory (ROM), and Programmable Read-Only Memory (PROM), cache 
memory in quantum, quantum-DNA, and DNA-quantum computing. Different types 
of programmable logic devices such as Programmable Logic Array (PLA), Field 
Programmable Gate Array (FPGA), Complex Programmable Logic Device (CPLD) 
in quantum, quantum-DNA, and DNA-quantum computing are also constructed. The 
readers will get knowledge about the designs of quantum, quantum-DNA, and DNA-
quantum nanoprocessors and their components such as RAM, Instruction Register 
(IR), Program Counter (PC), incrementor circuit, decoder, multiplexer, Arithmetic 
Logic Unit (ALU), and accumulator in quantum computing and DNA computing. 
The readers will get the idea of quantum computing, quantum-DNA computing, and 
DNA-quantum computing from basic to advanced levels which will help them to 
design new quantum, quantum-DNA, and DNA-quantum circuits. The last part of the 
book will discuss the data, heat, and speed-related issues of quantum biocomputing. 

Dhaka, Bangladesh Hafiz Md. Hasan Babu



Acknowledgments 

I would like to express my sincerest gratitude and special appreciation to the various 
researchers in the field of quantum-DNA computing. The contents of the quantum-
DNA computing book have been compiled from a wide variety of research works, 
where the researchers are pioneer in their respective fields. All the research articles 
related to the contents are listed at the end of each chapter. 

I am grateful to my great parents and dear family members for their endless 
support. Most of all, I want to thank my lovely wife Mrs. Sitara Roshan, sweet 
daughter Ms. Fariha Tasnim, and sweet son Md. Tahsin Hasan for their invaluable 
cooperation to complete this book. 

Finally, I am also thankful to all of them, especially to my beloved students Nitish 
Biswas, Md. Tareq Hasan, and Rownak Borhan Himel, who have provided their 
immense support and important time to finish this book.

ix



Contents 

1 Basic Operations in Quantum Computing and Biocomputing . . . . . . 1 
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.2 Basic Gates in Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . 5 

1.2.1 Quantum Controlled NOT Gate . . . . . . . . . . . . . . . . . . . . . 6 
1.2.2 Quantum Controlled-V Gate . . . . . . . . . . . . . . . . . . . . . . . . 8 
1.2.3 Quantum Controlled-V+ Gate . . . . . . . . . . . . . . . . . . . . . . 10 

1.3 Basic Operations in Quantum Computing . . . . . . . . . . . . . . . . . . . . 11 
1.3.1 Quantum OR Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
1.3.2 Quantum NOR Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
1.3.3 Quantum AND Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
1.3.4 Quantum NAND Operation . . . . . . . . . . . . . . . . . . . . . . . . 14 
1.3.5 Quantum XOR Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
1.3.6 Quantum XNOR Operation . . . . . . . . . . . . . . . . . . . . . . . . 16 

1.4 Basic Operations in Biocomputing . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
1.4.1 DNA NOT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
1.4.2 DNA OR Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
1.4.3 DNA NOR Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
1.4.4 DNA NAND Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
1.4.5 DNA AND Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
1.4.6 DNA XOR Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
1.4.7 DNA XNOR Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

Part I Memory Devices in Quantum Biocomputing 

2 Memory Devices in Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . 29 
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
2.2 Quantum Random-Access Memory . . . . . . . . . . . . . . . . . . . . . . . . . 30 

2.2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
2.2.2 Basic Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
2.2.3 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xi



xii Contents

2.2.4 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
2.2.5 Basic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
2.2.6 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
2.2.7 Design Architecture of a 4-to-1 RAM . . . . . . . . . . . . . . . . 36 
2.2.8 Working Principle of a Quantum RAM Memory . . . . . . . 38 
2.2.9 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

2.3 Quantum Read-Only Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
2.3.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
2.3.2 Basic Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 
2.3.3 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
2.3.4 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
2.3.5 Basic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
2.3.6 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
2.3.7 Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
2.3.8 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
2.3.9 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

2.4 Quantum Programmable Read-Only Memory . . . . . . . . . . . . . . . . 48 
2.4.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
2.4.2 Basic Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
2.4.3 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
2.4.4 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
2.4.5 Basic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
2.4.6 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
2.4.7 Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 
2.4.8 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 
2.4.9 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

2.5 Quantum Cache Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 
2.5.1 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 
2.5.2 Basic Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 
2.5.3 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
2.5.4 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
2.5.5 Basic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
2.5.6 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
2.5.7 Design Architecture of Quantum RAM . . . . . . . . . . . . . . 58 
2.5.8 Circuit Architecture of Quantum Cache Memory . . . . . . 61 
2.5.9 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
2.5.10 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

3 Memory Devices in Quantum-DNA Computing . . . . . . . . . . . . . . . . . . 65 
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 
3.2 Quantum-DNA Random-Access Memory . . . . . . . . . . . . . . . . . . . . 65 

3.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 
3.2.2 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

3.3 Quantum-DNA Read-Only Memory . . . . . . . . . . . . . . . . . . . . . . . . 67



Contents xiii

3.3.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 
3.3.2 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 
3.3.3 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

3.4 Quantum-DNA Programmable Read-Only Memory . . . . . . . . . . . 73 
3.4.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 
3.4.2 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 
3.4.3 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 

3.5 Quantum-DNA Cache Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 
3.5.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 
3.5.2 Circuit Architecture and Working Principle . . . . . . . . . . . 78 

3.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 

4 Memory Devices in DNA-Quantum Computing . . . . . . . . . . . . . . . . . . 81 
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 
4.2 DNA-Quantum Random-Access Memory . . . . . . . . . . . . . . . . . . . . 81 

4.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 
4.2.2 Working Principle and Circuit Architecture . . . . . . . . . . . 82 

4.3 DNA-Quantum Read-Only Memory . . . . . . . . . . . . . . . . . . . . . . . . 83 
4.3.1 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 
4.3.2 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

4.4 DNA-Quantum Programmable Read-Only Memory . . . . . . . . . . . 88 
4.4.1 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 
4.4.2 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

4.5 DNA-Quantum Cache Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 
4.5.1 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 
4.5.2 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

Part II Programmable Devices in Quantum Biocomputing 

5 Programmable Devices in Quantum Computing . . . . . . . . . . . . . . . . . . 99 
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 
5.2 Quantum Programmable Logic Array . . . . . . . . . . . . . . . . . . . . . . . 100 

5.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 
5.2.2 Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 
5.2.3 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 
5.2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 

5.3 Quantum Programmable Array Logic . . . . . . . . . . . . . . . . . . . . . . . 104 
5.3.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 
5.3.2 Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 
5.3.3 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 
5.3.4 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 

5.4 Quantum Field Programmable Gate Arrays . . . . . . . . . . . . . . . . . . 110 
5.4.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 
5.4.2 Design Architecture of Basic Components . . . . . . . . . . . . 112



xiv Contents

5.4.3 Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 
5.4.4 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 
5.4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 

5.5 Quantum Complex Programmable Devices . . . . . . . . . . . . . . . . . . . 116 
5.5.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 
5.5.2 Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 
5.5.3 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 
5.5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 

6 Programmable Devices in Quantum-DNA Computing . . . . . . . . . . . . 123 
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 
6.2 Quantum-DNA Programmable Logic Array . . . . . . . . . . . . . . . . . . 123 

6.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 
6.2.2 Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 
6.2.3 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 

6.3 Quantum-DNA Programmable Array Logic . . . . . . . . . . . . . . . . . . 127 
6.3.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 
6.3.2 Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 
6.3.3 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 

6.4 Quantum-DNA Field Programmable Gate Arrays . . . . . . . . . . . . . 131 
6.4.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 
6.4.2 Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 
6.4.3 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 

6.5 Quantum-DNA Complex Programmable Devices . . . . . . . . . . . . . 135 
6.5.1 Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 
6.5.2 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 

6.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 

7 Programmable Devices in DNA-Quantum Computing . . . . . . . . . . . . 139 
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 
7.2 DNA-Quantum Programmable Logic Array . . . . . . . . . . . . . . . . . . 140 

7.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 
7.2.2 Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 
7.2.3 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 

7.3 DNA-Quantum Programmable Array Logic . . . . . . . . . . . . . . . . . . 142 
7.3.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 
7.3.2 Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 
7.3.3 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 

7.4 DNA-Quantum Field Programmable Gate Arrays . . . . . . . . . . . . . 147 
7.4.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 
7.4.2 Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 
7.4.3 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 

7.5 DNA-Quantum Complex Programmable Devices . . . . . . . . . . . . . 151 
7.5.1 Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



Contents xv

7.5.2 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 

Part III Nano-Processor in Quantum Biocomputing 

8 Quantum Nanoprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 
8.2 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 
8.3 Block Diagram of a Complete Quantum Nanoprocessor . . . . . . . . 161 
8.4 Basic Components of Quantum Nanoprocessor . . . . . . . . . . . . . . . 163 

8.4.1 Design Procedure of Quantum RAM . . . . . . . . . . . . . . . . 163 
8.4.2 Design Procedure of Quantum Instruction Register . . . . 166 
8.4.3 Design Procedure of Quantum Program Counter . . . . . . 167 
8.4.4 Design Procedure of Quantum Incrementer Circuit . . . . 168 
8.4.5 Design Procedure of Quantum Decoder . . . . . . . . . . . . . . 169 
8.4.6 Design Procedure of Quantum Multiplexer . . . . . . . . . . . 170 
8.4.7 Design Procedure of Quantum ALU . . . . . . . . . . . . . . . . . 171 
8.4.8 Design Procedure of Quantum Accumulator . . . . . . . . . . 177 

8.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 
8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 

9 Quantum-DNA Nanoprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 
9.2 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 
9.3 Block Diagram of Quantum-DNA Nanoprocessor . . . . . . . . . . . . . 183 
9.4 Basic Components of Quantum-DNA Nanoprocessor . . . . . . . . . . 184 

9.4.1 Design and Working Principles of Quantum RAM . . . . . 186 
9.4.2 Design and Working Principles of DNA CPU . . . . . . . . . 186 
9.4.3 DNA Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . 186 
9.4.4 DNA Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 
9.4.5 DNA Incrementer Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 188 
9.4.6 DNA Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 
9.4.7 DNA Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 
9.4.8 DNA ALU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 
9.4.9 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 
9.4.10 Quantum Cache Memory . . . . . . . . . . . . . . . . . . . . . . . . . . 197 
9.4.11 DNA Cache Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 
9.4.12 NMR at 0-K for Converting DNA Sequence 

to Qubit in DNA-Quantum Nanoprocessor . . . . . . . . . . . 198 
9.4.13 NMR Relaxation at 0-K for Converting Qubit 

to the DNA Sequence in Quantum-DNA 
Nanoprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 

9.4.14 Heat Transfer Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 
9.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 
9.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200



xvi Contents

10 DNA-Quantum Nano Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 
10.2 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 
10.3 Block Diagram of DNA-Quantum Nano Processor . . . . . . . . . . . . 203 
10.4 Basic Components of DNA-Quantum Nanoprocessor . . . . . . . . . . 203 

10.4.1 DNA RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 
10.5 Quadrupole Ion Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 
10.6 Paul Trap Ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 
10.7 Design Procedure and Working Principle of DNA Cache ... . . . . . 207 
10.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 
10.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 

Part IV Heat, Speed, and Data Related Issues in Quantum 
Biocomputing 

11 Heat Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 
11.2 Basic Definitions for Heat Calculation in Quantum Circuits . . . . 212 

11.2.1 Quantum NOT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 214 
11.2.2 Quantum CNOT Operation . . . . . . . . . . . . . . . . . . . . . . . . . 214 
11.2.3 Quantum AND Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 215 
11.2.4 Quantum OR Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 

11.3 Heat Calculation for Quantum Operational Circuits . . . . . . . . . . . 217 
11.3.1 Quantum Full Subtractor . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 
11.3.2 Quantum 3-Qubit Even Parity Qubit Checker . . . . . . . . . 218 
11.3.3 Quantum 3-to-1 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . 219 

11.4 Basic Definitions for Heat Calculation in DNA Circuits . . . . . . . . 220 
11.5 Heat Calculation in DNA Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 229 

11.5.1 DNA Full Subtractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 
11.5.2 DNA Full Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 
11.5.3 DNA Multiplication Circuit . . . . . . . . . . . . . . . . . . . . . . . . 233 

11.6 Heat Calculation in Quantum-DNA Circuits . . . . . . . . . . . . . . . . . . 235 
11.6.1 Quantum-DNA Full Adder . . . . . . . . . . . . . . . . . . . . . . . . . 236 

11.7 Heat Calculation in DNA-Quantum Circuits . . . . . . . . . . . . . . . . . . 238 
11.7.1 DNA-Quantum Full Adder . . . . . . . . . . . . . . . . . . . . . . . . . 239 

11.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 
11.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 

12 Speed Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 
12.2 Speed Calculation for Quantum Operations . . . . . . . . . . . . . . . . . . 246 

12.2.1 Speed Calculation in Quantum Operational 
Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 

12.3 Speed Calculation for DNA Operations . . . . . . . . . . . . . . . . . . . . . . 254 
12.4 Speed Calculation in DNA Operational Circuits . . . . . . . . . . . . . . 255 

12.4.1 DNA Full Subtractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255



Contents xvii

12.4.2 DNA Full Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 
12.4.3 DNA Multiplication Circuit . . . . . . . . . . . . . . . . . . . . . . . . 258 

12.5 Speed Calculation in Quantum-DNA Circuits . . . . . . . . . . . . . . . . 260 
12.5.1 Full Subtractor at 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 
12.5.2 Full Adder at 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 
12.5.3 Multiplier at 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 
12.5.4 Multiplexer at 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 

12.6 Speed Calculation in DNA-Quantum Circuits . . . . . . . . . . . . . . . . 267 
12.6.1 3-Qubit Parity Qubit Checker at 0 K . . . . . . . . . . . . . . . . . 267 
12.6.2 Full Subtractor at 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 
12.6.3 Full Adder at 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 

12.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 
12.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 

13 Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 
13.2 Quantum Heat Conductance Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 276 

13.2.1 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 
13.2.2 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 

13.3 Heat Transfer in Quantum-DNA Logic Operations . . . . . . . . . . . . 277 
13.3.1 Heat Transfer from Quantum AND Operation 

to DNA NOT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 
13.3.2 Heat Transfer from Quantum OR Operation 

to DNA NOT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 
13.3.3 Heat Transfer from Quantum XOR Operation 

to DNA NOT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 
13.4 Heat Transfer in Quantum-DNA Circuits . . . . . . . . . . . . . . . . . . . . 282 

13.4.1 Heat Transfer in Quantum-DNA Full Adder Circuit . . . . 282 
13.4.2 Heat Transfer in Quantum-DNA Multiplier Circuit . . . . 284 

13.5 Heat Transfer in DNA-Quantum Circuits . . . . . . . . . . . . . . . . . . . . 286 
13.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 
13.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 

14 Data Conversion Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 
14.2 Data Conversion in Quantum-DNA Circuits . . . . . . . . . . . . . . . . . . 290 

14.2.1 NMR Relaxation at Room Temperature . . . . . . . . . . . . . . 290 
14.2.2 NMR Relaxation at 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 
14.2.3 Trapped Ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 

14.3 Data Conversion in DNA-Quantum Circuits . . . . . . . . . . . . . . . . . . 328 
14.3.1 Nuclear Magnetic Resonance . . . . . . . . . . . . . . . . . . . . . . . 329 
14.3.2 Structure of NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 
14.3.3 Working Procedure of NMR . . . . . . . . . . . . . . . . . . . . . . . . 331 
14.3.4 DNA Sequence to Qubits Using NMR . . . . . . . . . . . . . . . 333 
14.3.5 NMR at 0 K Using Cryogenic Probe . . . . . . . . . . . . . . . . . 359



xviii Contents

14.3.6 Quadrupole Ion Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 
14.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 

15 Data Management Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 
15.2 Quantum Cache Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 

15.2.1 D Flip-Flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 
15.2.2 Quantum One-Qubit Cache Memory . . . . . . . . . . . . . . . . 379 
15.2.3 Quantum Eight-Qubit Cache Memory . . . . . . . . . . . . . . . 379 

15.3 Data Management in Quantum-DNA Circuits . . . . . . . . . . . . . . . . 382 
15.3.1 Data Management in Quantum-DNA Full Adder . . . . . . 382 
15.3.2 Data Management in Quantum-DNA Multiplier . . . . . . . 385 
15.3.3 Data Management in Quantum-DNA Half 

Subtractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 
15.3.4 Data Management in Quantum-DNA Full 

Subtractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 
15.3.5 Data Management in Quantum-DNA Three-Qubit 

Parity Bit Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 
15.4 Data Management in DNA-Quantum Circuits . . . . . . . . . . . . . . . . 394 

15.4.1 DNA Cache Memory to Control DNA to Quantum 
Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 

15.4.2 DNA-Quantum Full-Adder Operation . . . . . . . . . . . . . . . . 397 
15.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401 
15.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 

Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411



About the Author 

Dr. Hafiz Md. Hasan Babu is currently working as a 
Professor in the Department of Computer Science and 
Engineering, University of Dhaka as well as the Dean 
of the Faculty of Engineering and Technology of the 
University of Dhaka, Bangladesh. In addition, at present, 
he is a member (part-time) of Bangladesh Accreditation 
Council, Ministry of Education of the Government of the 
People’s Republic of Bangladesh. He is also the Director 
of the Board of Directors of Bangladesh Submarine 
Cable Company Limited. He was the Chairman of the 
Department of Computer Science and Engineering of 
the University of Dhaka from 19-02-2003 to 18-02-
2006 and Pro-Vice-Chancellor of the National Univer-
sity of Bangladesh from 12-07-2016 to 11-07-2020. 
He was also a Professor and the founding Chairman 
of the Department of Robotics and Mechatronics Engi-
neering, University of Dhaka, Bangladesh. He obtained 
his Ph.D. degree in Electronics and Computer Science 
from Japan under the Japanese Government Scholar-
ship and received his M.Sc. degree in Computer Science 
and Engineering from Czech Republic under the Czech 
Government Scholarship. He also received the DAAD 
Research Fellowship from Germany. 

Dr. Hafiz Md. Hasan Babu was awarded Dr. M. 
O. Ghani Memorial Gold Medal by the Bangladesh 
Academy of Sciences in 2015 for his excellent research 
work in the progress of Physical Sciences in Bangladesh. 
In addition, he was awarded the UGC Gold Medal 
Award-2017 in Mathematics, Statistics and Computer 
Science category for his research work on quantum

xix



xx About the Author

multiplier-accumulator device. He is currently an Asso-
ciate Editor of the famous research journal titled “IET 
Computers and Digital Techniques” published by the 
Institution of Engineering and Technology of the UK. 
He was a member of Prime Minister’s ICT Task 
Force in Bangladesh. He was also the President of 
Bangladesh Computer Society for the session 2017– 
2020. At present, he is the President of International 
Internet Society, Bangladesh. 

Professor Dr. Hafiz Md. Hasan Babu published more 
than a hundred research papers. Three of his research 
papers have received the best research awards in the 
International Conferences. 

In addition, he has published the following four text-
books by four famous publishers of the United Kingdom 
(UK), Singapore, and the United States of America 
(USA) for the graduate and post-graduate students: 

1. Hafiz Md. Hasan Babu, “Quantum Computing: A 
Pathway to Quantum Logic Design,” IOP (Institute 
of Physics) Publishing, 2020, Bristol, UK. 

2. Hafiz Md. Hasan Babu, “Reversible and DNA 
Computing,” Wiley Publishers, 2021, UK. 

3. Hafiz Md. Hasan Babu, “VLSI Circuits and 
Embedded Systems,” CRC Press (A Publication of 
Taylor & Francis Group), July 2022, USA. 

4. Md. Jahangir Alam, Guoqing Hu, Hafiz Md. Hasan 
Babu and Huazhong Xu, “Control Engineering 
Theory and Applications,” CRC Press (A Publica-
tion of Taylor & Francis Group), September 2022, 
USA. 

5. Hafiz Md. Hasan Babu, “Multiple-Valued 
Computing in Quantum Molecular Biology”, 
Volume I, CRC Press, 2023, USA 

6. Hafiz Md. Hasan Babu, “Multiple-Valued 
Computing in Quantum Molecular Biology”, 
Volume II, CRC Press, 2023, USA 

7. Hafiz Md. Hasan Babu, “DNA Logic Design: 
Computing with DNA”, World Scientific Publishing 
Company, May 2024, Singapore.



Acronyms 

ALU Arithmetic Logic Unit 
BCD Binary Coded Decimal 
CLB Configurable Logic Block 
CPLD Complex Programmable Logic Device 
CPU Central Processing Unit 
DNA Deoxyribonucleic Acid 
EMR Electron Magnetic Resonance 
FPGA Field-Programmable Gate Array 
IR Instruction Register 
LUT Look-Up Table 
MUX Multiplexer 
NMR Nuclear Magnetic Resonance 
NTI Negative Ternary Inverter 
PAL Programmable Array Logic 
PCR Polymerase Chain Reaction 
PLA Programmable Logic Array 
PROM Programmable Read-Only Memory 
PTI Positive Ternary Inverter 
QB Quantum Biology 
RAM Random-Access Memory 
RF Radio Frequency 
SIPO Serial-In Parallel-Out 
SISO Serial-In Serial-Out 
SPLD Simple Programmable Logic Devices 
STI Standard Ternary Inverter 
XNOR Exclusive NOR 
XOR Exclusive OR

xxi



List of Figures 

Fig. 1.1 Quantum CNOT gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Fig. 1.2 The block diagram of quantum CNOT gate . . . . . . . . . . . . . . . . 7 
Fig. 1.3 Quantum controlled-V gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Fig. 1.4 Quantum controlled-V+ gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
Fig. 1.5 Circuit diagram of quantum OR operation . . . . . . . . . . . . . . . . . 12 
Fig. 1.6 Circuit diagrams of quantum NOR operation . . . . . . . . . . . . . . . 13 
Fig. 1.7 The circuit diagram of quantum AND operation . . . . . . . . . . . . 14 
Fig. 1.8 Circuit diagrams of quantum NAND operation . . . . . . . . . . . . . 15 
Fig. 1.9 Circuit diagram of quantum XOR operation . . . . . . . . . . . . . . . 16 
Fig. 1.10 Circuit diagram of a quantum XNOR operation . . . . . . . . . . . . 17 
Fig. 1.11 The circuit architecture of a DNA NOT operation . . . . . . . . . . . 19 
Fig. 1.12 The pair matching between the DNA base sequences . . . . . . . . 19 
Fig. 1.13 The circuit architecture of a DNA OR operation . . . . . . . . . . . . 20 
Fig. 1.14 The circuit architecture of a DNA NOR operation . . . . . . . . . . 21 
Fig. 1.15 The circuit architecture of a DNA NAND operation . . . . . . . . . 22 
Fig. 1.16 The circuit architecture of a DNA AND operation . . . . . . . . . . 23 
Fig. 1.17 The circuit architecture of a DNA XOR operation . . . . . . . . . . 24 
Fig. 1.18 The circuit architecture of a DNA XNOR operation . . . . . . . . . 25 
Fig. 2.1 2k-to-n RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
Fig. 2.2 Block diagram of a quantum 4-to-1 RAM . . . . . . . . . . . . . . . . . 35 
Fig. 2.3 Quantum single-qubit cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
Fig. 2.4 Quantum qubit cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
Fig. 2.5 Circuit architecture of a quantum 4-to-1 RAM . . . . . . . . . . . . . 41 
Fig. 2.6 Block diagram of a 2n-to-m ROM . . . . . . . . . . . . . . . . . . . . . . . 44 
Fig. 2.7 Block diagram of quantum 4-to-2 ROM . . . . . . . . . . . . . . . . . . . 46 
Fig. 2.8 Quantum 4-to-2 ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
Fig. 2.9 2n-to-m PROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
Fig. 2.10 Block diagram of quantum 4-to-2 PROM . . . . . . . . . . . . . . . . . 52 
Fig. 2.11 Circuit architecture of quantum 4-to-2 PROM . . . . . . . . . . . . . . 53 
Fig. 2.12 2k-to-n Cache memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 
Fig. 2.13 Block diagram of quantum 4-to-1 cache memory . . . . . . . . . . . 59

xxiii



xxiv List of Figures

Fig. 2.14 Circuit architecture of quantum RAM cell . . . . . . . . . . . . . . . . . 60 
Fig. 2.15 Quantum RAM cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 
Fig. 2.16 Circuit architecture of quantum 4-to-1 cache memory . . . . . . . 63 
Fig. 3.1 Block diagram of quantum-DNA 4-to-1 RAM . . . . . . . . . . . . . . 67 
Fig. 3.2 Circuit architecture of quantum-DNA 4-to-1 RAM . . . . . . . . . . 68 
Fig. 3.3 Block diagram of quantum-DNA 4-to-2 ROM . . . . . . . . . . . . . . 69 
Fig. 3.4 Circuit architecture of quantum-DNA 4-to-2 ROM . . . . . . . . . . 71 
Fig. 3.5 Block diagram of quantum-DNA 4-to-2 PROM . . . . . . . . . . . . . 74 
Fig. 3.6 Circuit architecture of quantum–DNA 4-to-2 PROM . . . . . . . . . 75 
Fig. 3.7 Block diagram of quantum-DNA 4-to-1 cache memory . . . . . . 78 
Fig. 4.1 Block diagram of quantum-DNA 4-to-1 RAM . . . . . . . . . . . . . . 83 
Fig. 4.2 Circuit architecture of DNA-quantum 4-to-1 RAM . . . . . . . . . . 84 
Fig. 4.3 DNA-quantum 4-to-2 ROM memory . . . . . . . . . . . . . . . . . . . . . . 86 
Fig. 4.4 Circuit architecture of DNA-quantum 4-to-2 ROM . . . . . . . . . . 87 
Fig. 4.5 Block diagram of DNA-quantum 4-to-2 PROM . . . . . . . . . . . . . 89 
Fig. 4.6 Circuit architecture of DNA-quantum 4-to-2 PROM . . . . . . . . . 90 
Fig. 4.7 Block diagram of Quantum-DNA 4-to-1 Cache memory . . . . . 93 
Fig. 4.8 DNA-quantum 4-to-1 cache memory . . . . . . . . . . . . . . . . . . . . . 94 
Fig. 5.1 Block diagram of quantum PLA . . . . . . . . . . . . . . . . . . . . . . . . . 101 
Fig. 5.2 Circuit diagram of PLA for functions F1, F2, and F3 . . . . . . . . 102 
Fig. 5.3 Circuit architecture of quantum PLA . . . . . . . . . . . . . . . . . . . . . . 103 
Fig. 5.4 Programmable array logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 
Fig. 5.5 Block diagram of a quantum PAL . . . . . . . . . . . . . . . . . . . . . . . . 106 
Fig. 5.6 PAL for functions F1 and F2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 
Fig. 5.7 Circuit architecture of quantum PAL . . . . . . . . . . . . . . . . . . . . . . 109 
Fig. 5.8 FPGA circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 
Fig. 5.9 FPGA configurable logic block . . . . . . . . . . . . . . . . . . . . . . . . . . 111 
Fig. 5.10 Quantum D flip-flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 
Fig. 5.11 Two inputs look-up table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 
Fig. 5.12 Quantum 2-to-1 MUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 
Fig. 5.13 Circuit architecture of quantum FPGA . . . . . . . . . . . . . . . . . . . . 115 
Fig. 5.14 Block diagram of connected logic block PLDs . . . . . . . . . . . . . . 116 
Fig. 5.15 Quantum CPLD configurable logic block . . . . . . . . . . . . . . . . . . 118 
Fig. 5.16 Logic block of a PLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 
Fig. 5.17 Functional block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 
Fig. 5.18 Circuit architecture of quantum CPLD . . . . . . . . . . . . . . . . . . . . 120 
Fig. 6.1 Block diagram of quantum-DNA PLA . . . . . . . . . . . . . . . . . . . . 124 
Fig. 6.2 Quantum-DNA PLA for functions F1, F2, and F3 . . . . . . . . . . . 126 
Fig. 6.3 Block diagram of quantum-DNA PAL . . . . . . . . . . . . . . . . . . . . 128 
Fig. 6.4 Quantum-DNA PAL for functions F1 and F2 . . . . . . . . . . . . . . . 131 
Fig. 6.5 General organization of quantum-DNA circuit . . . . . . . . . . . . . . 133 
Fig. 6.6 Circuit architecture of quantum-DNA FPGA . . . . . . . . . . . . . . . 134 
Fig. 6.7 Circuit architecture of quantum-DNA CPLD . . . . . . . . . . . . . . . 137 
Fig. 7.1 Block diagram of DNA-quantum PLA . . . . . . . . . . . . . . . . . . . . 141 
Fig. 7.2 Circuit architecture of DNA-quantum PLA . . . . . . . . . . . . . . . . 143



List of Figures xxv

Fig. 7.3 Block diagram of the DNA-Quantum PAL . . . . . . . . . . . . . . . . . 144 
Fig. 7.4 Circuit architecture of DNA-Quantum PAL . . . . . . . . . . . . . . . . 146 
Fig. 7.5 General organization of DNA-quantum circuit . . . . . . . . . . . . . . 148 
Fig. 7.6 DNA-quantum FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 
Fig. 7.7 Circuit diagram of DNA part of DNA-quantum CPLD . . . . . . . 152 
Fig. 7.8 Circuit diagram of quantum part of DNA-quantum CPLD . . . . 153 
Fig. 7.9 Block diagram of DNA-quantum CPLD . . . . . . . . . . . . . . . . . . . 153 
Fig. 7.10 Circuit architecture of DNA-quantum CPLD . . . . . . . . . . . . . . . 154 
Fig. 8.1 Quantum nanoprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 
Fig. 8.2 4-to-2 qubits quantum RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 
Fig. 8.3 Quantum RAM cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 
Fig. 8.4 4-qubit instruction register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 
Fig. 8.5 2-qubit program counter register . . . . . . . . . . . . . . . . . . . . . . . . . 168 
Fig. 8.6 2-qubit quantum incrementer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 
Fig. 8.7 Quantum 2-to-4 decoder circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 170 
Fig. 8.8 4-to-1 quantum MUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 
Fig. 8.9 2-qubit quantum ALU operation . . . . . . . . . . . . . . . . . . . . . . . . . 172 
Fig. 8.10 Quantum adder operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 
Fig. 8.11 Quantum subtractor operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 
Fig. 8.12 Quantum multiplier operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 
Fig. 8.13 Quantum divider operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 
Fig. 8.14 2-qubit quantum accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 
Fig. 9.1 Quantum-DNA Nanoprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . 185 
Fig. 9.2 DNA instruction register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 
Fig. 9.3 2-Molecular DNA program counter . . . . . . . . . . . . . . . . . . . . . . . 188 
Fig. 9.4 2-Molecular DNA incrementer . . . . . . . . . . . . . . . . . . . . . . . . . . 189 
Fig. 9.5 2-Molecular DNA decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 
Fig. 9.6 4-to-1 DNA multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 
Fig. 9.7 DNA 2-Molecular ALU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 
Fig. 9.8 DNA Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 
Fig. 9.9 DNA subtractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 
Fig. 9.10 DNA multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 
Fig. 9.11 DNA divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 
Fig. 9.12 DNA accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 
Fig. 10.1 DNA-quantum nanoprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 
Fig. 10.2 2-molecular DNA RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 
Fig. 10.3 DNA RAM cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 
Fig. 11.1 Quantum NOT gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 
Fig. 11.2 Quantum CNOT gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 
Fig. 11.3 Quantum AND operational gate . . . . . . . . . . . . . . . . . . . . . . . . . . 215 
Fig. 11.4 Quantum OR operational gate . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 
Fig. 11.5 Quantum full subtractor circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 217 
Fig. 11.6 Quantum 3-qubit even parity qubit checker . . . . . . . . . . . . . . . . 218 
Fig. 11.7 Quantum multiplexer circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 
Fig. 11.8 DNA AND operational gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222



xxvi List of Figures

Fig. 11.9 DNA OR operational gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 
Fig. 11.10 DNA NOT operational gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 
Fig. 11.11 DNA XOR gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 
Fig. 11.12 DNA full subtractor circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 
Fig. 11.13 DNA full adder circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 
Fig. 11.14 DNA multiplier circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 
Fig. 11.15 Quantum-DNA full adder at room temperature . . . . . . . . . . . . . 236 
Fig. 11.16 DNA-Quantum full adder at room temperature . . . . . . . . . . . . . 240 
Fig. 12.1 Quantum AND operation circuit . . . . . . . . . . . . . . . . . . . . . . . . . 247 
Fig. 12.2 Quantum OR operation circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 
Fig. 12.3 Quantum XOR operation circuit . . . . . . . . . . . . . . . . . . . . . . . . . 249 
Fig. 12.4 Quantum NAND operation circuit . . . . . . . . . . . . . . . . . . . . . . . . 249 
Fig. 12.5 Quantum NOR operation circuit . . . . . . . . . . . . . . . . . . . . . . . . . 250 
Fig. 12.6 Quantum XNOR operation circuit . . . . . . . . . . . . . . . . . . . . . . . . 251 
Fig. 12.7 Quantum full subtractor circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 251 
Fig. 12.8 Quantum three-qubit even parity qubit checker . . . . . . . . . . . . . 252 
Fig. 12.9 Quantum multiplexer circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 
Fig. 12.10 DNA full subtractor circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 
Fig. 12.11 DNA full adder circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 
Fig. 12.12 DNA multiplier circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 
Fig. 12.13 A quantum-DNA full subtractor . . . . . . . . . . . . . . . . . . . . . . . . . 261 
Fig. 12.14 A quantum-DNA full adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 
Fig. 12.15 Quantum-DNA multiplier circuit . . . . . . . . . . . . . . . . . . . . . . . . . 264 
Fig. 12.16 Quantum-DNA 2-to-1 multiplexer circuit . . . . . . . . . . . . . . . . . . 266 
Fig. 12.17 DNA-quantum circuit of 3-molecular even parity 

molecular checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 
Fig. 12.18 DNA-quantum circuit of full subtractor at 0 K operation . . . . . 270 
Fig. 12.19 DNA-quantum operational circuit for full adder at 0 K . . . . . . . 272 
Fig. 13.1 Quantum heat conduction circuit using photon 

and nanotube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 
Fig. 13.2 Quantum-DNA NAND operation circuit . . . . . . . . . . . . . . . . . . 278 
Fig. 13.3 Quantum-DNA NOR operation circuit . . . . . . . . . . . . . . . . . . . . 280 
Fig. 13.4 Quantum-DNA XNOR operation heat transfer circuit . . . . . . . 281 
Fig. 13.5 Quantum-DNA full Adder for heat transfer . . . . . . . . . . . . . . . . 283 
Fig. 13.6 Quantum-DNA multiplier for heat transfer using 

nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 
Fig. 13.7 DNA-quantum Full Adder at room temperature . . . . . . . . . . . . 287 
Fig. 14.1 Circuit structure of NMR relaxation . . . . . . . . . . . . . . . . . . . . . . 291 
Fig. 14.2 Circuit of a room temperature probe . . . . . . . . . . . . . . . . . . . . . . 292 
Fig. 14.3 Circuit of a Inner RF coil b Outer RF coil in cryogenic 

probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 
Fig. 14.4 Spin state realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 
Fig. 14.5 Conversion of qubit into DNA sequence . . . . . . . . . . . . . . . . . . . 293 
Fig. 14.6 Conversion of qubit into DNA sequence from an AND 

operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294



List of Figures xxvii

Fig. 14.7 Conversion of qubit into DNA sequence from a quantum 
OR operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 

Fig. 14.8 Conversion of qubit into DNA sequence from a quantum 
NOT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 

Fig. 14.9 Conversion of qubit into DNA sequence from a quantum 
XOR operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 

Fig. 14.10 Quantum-DNA full adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 
Fig. 14.11 Quantum-DNA full subtractor . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 
Fig. 14.12 Quantum-DNA 2-to-1 multiplexer . . . . . . . . . . . . . . . . . . . . . . . . 305 
Fig. 14.13 Quantum-DNA AND operation using cryogenic probe 

at 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 
Fig. 14.14 Quantum-DNA OR operation using cryogenic probe at 0 K . . . 309 
Fig. 14.15 Quantum-DNA XOR operation using cryogenic probe 

at 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 
Fig. 14.16 Quantum-DNA full adder using cryogenic probe at 0 K . . . . . . 312 
Fig. 14.17 Quantum-DNA full subtractor using cryogenic probe 

at 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 
Fig. 14.18 Quantum-DNA full 2-to-1 multiplexer using cryogenic 

probe at 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 
Fig. 14.19 Quantum-DNA multiplier operational circuit . . . . . . . . . . . . . . . 315 
Fig. 14.20 Trapped Ion, used for experiments towards realizing 

a quantum computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 
Fig. 14.21 Trapped ion circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 
Fig. 14.22 Basic arrangement for paul and penning traps (a). 

For static trapping, cylindrical penning traps are used (b) . . . . . 322 
Fig. 14.23 Linear paul trap (a) and Open end-cap cylindrical penning 

trap (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 
Fig. 14.24 Quantum-DNA AND operation . . . . . . . . . . . . . . . . . . . . . . . . . . 324 
Fig. 14.25 Quantum-DNA OR operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 
Fig. 14.26 Schematic figure of NMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 
Fig. 14.27 Outfit and inner structure of NMR . . . . . . . . . . . . . . . . . . . . . . . . 330 
Fig. 14.28 Room temperature probe of NMR . . . . . . . . . . . . . . . . . . . . . . . . 331 
Fig. 14.29 Circuit of a) Inner RF coil; b) Outer RF coil in cryogenic 

probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 
Fig. 14.30 Spins states realization of a qubit . . . . . . . . . . . . . . . . . . . . . . . . . 332 
Fig. 14.31 DNA-based implementation of the NOT operation . . . . . . . . . . 334 
Fig. 14.32 DNA-based implementation of the OR operation . . . . . . . . . . . . 335 
Fig. 14.33 DNA-based implementation of the NOR operation . . . . . . . . . . 336 
Fig. 14.34 DNA-based implementation of the NAND gate . . . . . . . . . . . . . 337 
Fig. 14.35 DNA-based AND operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 
Fig. 14.36 DNA-based implementation of the XOR operation . . . . . . . . . . 339 
Fig. 14.37 DNA-based implementation of the XNOR operation . . . . . . . . . 341 
Fig. 14.38 DNA-quantum NOT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 
Fig. 14.39 DNA-quantum OR operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 
Fig. 14.40 DNA-quantum XOR operation . . . . . . . . . . . . . . . . . . . . . . . . . . 345



xxviii List of Figures

Fig. 14.41 DNA-quantum AND operation . . . . . . . . . . . . . . . . . . . . . . . . . . 346 
Fig. 14.42 DNA-quantum full adder at room temperature . . . . . . . . . . . . . . 348 
Fig. 14.43 DNA-quantum full subtractor at room temperature . . . . . . . . . . 351 
Fig. 14.44 DNA-quantum 2-to-1 multiplexer at room temperature . . . . . . . 354 
Fig. 14.45 DNA-Quantum multiplier operational circuit . . . . . . . . . . . . . . . 356 
Fig. 14.46 DNA-quantum NOT operation at 0 K . . . . . . . . . . . . . . . . . . . . . 361 
Fig. 14.47 DNA-quantum OR operation at 0 K . . . . . . . . . . . . . . . . . . . . . . 362 
Fig. 14.48 DNA-quantum XOR operation . . . . . . . . . . . . . . . . . . . . . . . . . . 363 
Fig. 14.49 DNA-quantum full adder at 0 K . . . . . . . . . . . . . . . . . . . . . . . . . . 365 
Fig. 14.50 DNA-quantum full subtractor at 0 K . . . . . . . . . . . . . . . . . . . . . . 366 
Fig. 14.51 DNA-quantum 2-to-1 multiplexer at 0 K . . . . . . . . . . . . . . . . . . . 367 
Fig. 14.52 Block diagram of quadrupole ion trap . . . . . . . . . . . . . . . . . . . . . 368 
Fig. 14.53 Circuit diagram of quadrupole trap ion . . . . . . . . . . . . . . . . . . . . 369 
Fig. 14.54 DNA-quantum AND operation . . . . . . . . . . . . . . . . . . . . . . . . . . 372 
Fig. 14.55 DNA-quantum NOR operation . . . . . . . . . . . . . . . . . . . . . . . . . . 373 
Fig. 15.1 Logic symbol of D flip-flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 
Fig. 15.2 Circuit diagram of quantum D flip-flop . . . . . . . . . . . . . . . . . . . . 379 
Fig. 15.3 The circuit diagram of one-bit quantum cache memory . . . . . . . 380 
Fig. 15.4 The circuit diagram of quantum 4-to-2 cache memory . . . . . . . 380 
Fig. 15.5 Block diagram of a quantum cache memory . . . . . . . . . . . . . . . . 381 
Fig. 15.6 Circuit of quantum-DNA full adder with cache memory . . . . . . 383 
Fig. 15.7 Circuit of quantum-DNA multiplier with cache memory . . . . . . 385 
Fig. 15.8 Circuit of quantum-DNA half subtractor with cache 

memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 
Fig. 15.9 Circuit of quantum-DNA full subtractor with cache 

memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 
Fig. 15.10 Circuit of quantum-DNA three-qubit even parity qubit 

checker with cache memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 
Fig. 15.11 The circuit diagram of one-molecular sequence DNA 

cache memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 
Fig. 15.12 The circuit diagram of one-molecular sequence DNA 

cache memory is divided into four blocks . . . . . . . . . . . . . . . . . . 395 
Fig. 15.13 The block architecture of one-molecular DNA cache 

memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 
Fig. 15.14 DNA one-molecular cache memory cell . . . . . . . . . . . . . . . . . . . 396 
Fig. 15.15 The circuit diagram of DNA 4-to-2 cache memory . . . . . . . . . . 397 
Fig. 15.16 DNA 2-to-4 decoder operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 
Fig. 15.17 The block diagram of DNA cache memory . . . . . . . . . . . . . . . . . 399 
Fig. 15.18 The final circuit diagram of the DNA-quantum full adder . . . . . 399



List of Tables 

Table 1.1 Operations in quantum CNOT gate . . . . . . . . . . . . . . . . . . . . . . 6 
Table 1.2 Operations in the quantum controlled-V gate . . . . . . . . . . . . . 9 
Table 1.3 Operations in the quantum controlled-V+ gate . . . . . . . . . . . . 11 
Table 1.4 Truth table of a quantum OR operation . . . . . . . . . . . . . . . . . . 12 
Table 1.5 Truth table of a quantum NOR operation . . . . . . . . . . . . . . . . 13 
Table 1.6 Truth table of a quantum AND operation . . . . . . . . . . . . . . . . 15 
Table 1.7 Truth table of a quantum NAND operation . . . . . . . . . . . . . . . 16 
Table 1.8 Truth table for quantum XOR operation . . . . . . . . . . . . . . . . . 16 
Table 1.9 Truth table for quantum XNOR operation . . . . . . . . . . . . . . . . 17 
Table 1.10 The truth table of a DNA NOT operation . . . . . . . . . . . . . . . . 19 
Table 1.11 The truth table of a DNA OR operation . . . . . . . . . . . . . . . . . . 20 
Table 1.12 The truth table of a DNA NOR operation . . . . . . . . . . . . . . . . 21 
Table 1.13 The truth table of a DNA NAND operation . . . . . . . . . . . . . . . 21 
Table 1.14 The truth table of a DNA AND operation . . . . . . . . . . . . . . . . 23 
Table 1.15 The truth table of a DNA XOR operation . . . . . . . . . . . . . . . . 24 
Table 1.16 The truth table of a DNA XNOR operation . . . . . . . . . . . . . . . 24 
Table 2.1 Control input of a memory chip . . . . . . . . . . . . . . . . . . . . . . . . 40 
Table 2.2 Truth table of quantum 4-to-2 ROM . . . . . . . . . . . . . . . . . . . . 48 
Table 2.3 Truth table of quantum 4-to-2 PROM . . . . . . . . . . . . . . . . . . . 52 
Table 2.4 Control input to memory chip . . . . . . . . . . . . . . . . . . . . . . . . . . 64 
Table 3.1 Truth table of a quantum-DNA 4-to-2 ROM . . . . . . . . . . . . . . 72 
Table 3.2 Truth table of quantum-DNA 4-to-2 PROM . . . . . . . . . . . . . . . 76 
Table 3.3 Control input to memory chip . . . . . . . . . . . . . . . . . . . . . . . . . . 79 
Table 4.1 Truth table of quantum-DNA 4-to-2 ROM . . . . . . . . . . . . . . . . 86 
Table 4.2 Truth table of quantum-DNA 4-to-2 PROM . . . . . . . . . . . . . . . 91 
Table 5.1 Truth table of quantum PLA for functions F1, F2, and F3 . . . 101 
Table 5.2 Truth table of a quantum PAL for functions F1 and F2 . . . . . . 107 
Table 6.1 Truth table of quantum-DNA PLA for functions F1, F2, 

and F3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 
Table 6.2 Truth table of quantum-DNA PAL for functions F1 

and F2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xxix



xxx List of Tables

Table 7.1 Truth Table of DNA-Quantum PLA for Functions F1, 
F2, and F3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 

Table 7.2 Truth Table of DNA-Quantum PAL for Functions F1 
and F2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 

Table 12.1 Execution times for basic quantum gate operations . . . . . . . . . 247 
Table 14.1 Outputs of data conversion for quantum AND operation . . . . 295 
Table 14.2 Outputs of data conversion for quantum OR operation . . . . . . 296 
Table 14.3 Outputs of data conversion for quantum NOT operation . . . . . 297 
Table 14.4 Outputs of data conversion for quantum XOR operation . . . . . 299 
Table 14.5 Outputs of quantum-DNA full adder operation . . . . . . . . . . . . 300 
Table 14.6 Outputs of quantum-DNA full subtractor operation . . . . . . . . . 305 
Table 14.7 Outputs of quantum-DNA 2-to-1 multiplexer operation . . . . . 306 
Table 14.8 Outputs of data conversion for quantum AND operation . . . . 308 
Table 14.9 Outputs of quantum-DNA multiplier operation . . . . . . . . . . . . 318 
Table 14.10 Truth table of V and V+ gates . . . . . . . . . . . . . . . . . . . . . . . . . . 325 
Table 14.11 Truth table of quantum-DNA AND operation . . . . . . . . . . . . . 326 
Table 14.12 Truth table of V and V+ gates . . . . . . . . . . . . . . . . . . . . . . . . . . 328 
Table 14.13 Truth table of quantum-DNA OR operation . . . . . . . . . . . . . . . 328 
Table 14.14 Inputs and outputs of DNA NOT operation . . . . . . . . . . . . . . . 334 
Table 14.15 Inputs and outputs of DNA OR operation . . . . . . . . . . . . . . . . . 336 
Table 14.16 Inputs and outputs of DNA NOR operation . . . . . . . . . . . . . . . 336 
Table 14.17 Inputs and outputs of DNA NAND operation . . . . . . . . . . . . . . 337 
Table 14.18 Inputs and outputs of DNA AND operation . . . . . . . . . . . . . . . 339 
Table 14.19 Inputs and outputs of DNA XOR operation . . . . . . . . . . . . . . . 340 
Table 14.20 Inputs and outputs of DNA XNOR operation . . . . . . . . . . . . . . 341 
Table 14.21 Inputs and outputs of DNA-quantum NOT operation . . . . . . . 342 
Table 14.22 Inputs and outputs of DNA-quantum OR operation . . . . . . . . . 344 
Table 14.23 Inputs and outputs of DNA-quantum XOR operation . . . . . . . 346 
Table 14.24 Input and output of DNA-quantum AND operation . . . . . . . . . 347 
Table 14.25 Outputs of DNA-quantum full adder operation . . . . . . . . . . . . 348 
Table 14.26 Outputs of DNA-quantum full subtractor operation . . . . . . . . . 351 
Table 14.27 Outputs of a DNA-quantum 2-to-1 multiplexer operation . . . . 355 
Table 14.28 Outputs of DNA-quantum multiplier operation . . . . . . . . . . . . 357 
Table 14.29 Truth table of DNA-quantum AND gate . . . . . . . . . . . . . . . . . . 372 
Table 14.30 Truth table of DNA-quantum NOR gate . . . . . . . . . . . . . . . . . . 374 
Table 15.1 Input-output table of D flip-flop . . . . . . . . . . . . . . . . . . . . . . . . 379 
Table 15.2 Outputs of quantum-DNA full-adder operation . . . . . . . . . . . . 384 
Table 15.3 Outputs of quantum-DNA half subtractor operation . . . . . . . . 389 
Table 15.4 Outputs of quantum-DNA full subtractor operation . . . . . . . . . 391



Chapter 1 
Basic Operations in Quantum Computing 
and Biocomputing 

Quantum computing is a multidisciplinary field comprising aspects of computer 
science, physics, and mathematics that utilizes quantum mechanics to solve com-
plex problems faster than on classical computers. The field of quantum computing 
includes hardware research and application development. Quantum computers are 
able to solve certain types of problems faster than classical computers by taking 
advantage of quantum mechanical effects, such as superposition and quantum inter-
ference. Some applications where quantum computers can provide such a speed boost 
include machine learning (ML), optimization, and simulation of physical systems. 
Eventual use cases could be portfolio optimization in finance or the simulation of 
chemical systems, solving problems that are currently impossible for even the most 
powerful supercomputers on the market. Quantum computing is a computational 
method based on quantum mechanics and quantum physics. It is a beautiful combi-
nation of physics, mathematics, computer science, and information theory. By con-
trolling the behavior of small physical particles such as atoms, electrons, photons, and 
other microscopic particles, they achieved exponentially greater energy efficiency, 
lower power consumption, and extremely faster than traditional computers. Quan-
tum computers can measure multiple phenomena simultaneously through quantum 
entanglement. DNA computing is an emerging branch of computing that utilizes 
DNA and molecular biology hardware instead of traditional electronic computing. It 
involves executing molecular reaction techniques on DNA molecules, which provide 
high computation power and storage capacity. The main challenge in implementing 
DNA computing is conducting wet lab experiments in a controlled manner. DNA 
computing has the potential to integrate with quantum computing and nanotechnol-
ogy, expanding the scope of research in this field. DNA computing or biocomputing 
or biological computing is performing calculations with biological molecules instead 
of traditional silicon chips. The idea that single molecules or even atoms can be used 
for calculations dates back to 1959, when the American physicist Richard Feynman 
presented his ideas on nanotechnology. The characteristics of the DNA molecule aid 
in the induction of quantum features such as superposition, tunneling, coherence, 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9_1 

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5349-9_1&domain=pdf
https://doi.org/10.1007/978-981-97-5349-9_1
https://doi.org/10.1007/978-981-97-5349-9_1
https://doi.org/10.1007/978-981-97-5349-9_1
https://doi.org/10.1007/978-981-97-5349-9_1
https://doi.org/10.1007/978-981-97-5349-9_1
https://doi.org/10.1007/978-981-97-5349-9_1
https://doi.org/10.1007/978-981-97-5349-9_1
https://doi.org/10.1007/978-981-97-5349-9_1
https://doi.org/10.1007/978-981-97-5349-9_1
https://doi.org/10.1007/978-981-97-5349-9_1
https://doi.org/10.1007/978-981-97-5349-9_1


2 1 Basic Operations in Quantum Computing and Biocomputing

and entanglement. Superposition is the set of quantum particle states in which a 
particle can be in either a single or mixed state. Quantum computing is based on 
quantum bits, sometimes that is known as “qubits,” which may represent either |0> 
or |1> and the fact that qubits may acquire a mixed state known as superposition, 
in which they can be both |1> and |0> at the same time is fascinating. Consider 
the following scenario: it’s a coin. When a coin is tossed over the head, it begins 
to revolve at random. Because it spins randomly, there is a chance of being head, 
tail, or both at the same moment throughout the rotation. Tunneling occurs when 
a particle can pass through a potential energy barrier that is typically stronger than 
the particle’s kinetic energy. In the quantum universe, a particle can pass through 
a barrier if it does not have any kinetic energy. In the actual world, for example, a 
ball with 100 J energy may readily overcome a barrier (hill) with just 70 J energy. 
However, if the ball’s energy is 100 J and the barrier’s energy is 200 J, the ball will 
never pass through the barrier. The ball will go up to a distance of 100 J before 
returning. However, in the quantum realm, a particle with less energy than the bar-
rier can also permeate it, which is a fascinating concept. Quantum coherence refers 
to the concept of superpositioning, which is central to quantum physics and quan-
tum computing. Quantum coherence considers a scenario in which an object’s wave 
property is divided into the two waves that coherently interfere with one another. The 
theory behind quantum coherence is that all things exhibit wave-like qualities. It’s 
related to quantum entanglement in that it includes the sharing states of two quantum 
particles rather than two quantum waves of a single particle. Entanglement is a term 
used to describe a relationship between two or more particles that interact in such a 
manner that makes it difficult to characterize each particle separately. Measurements 
of the particles, on the other hand, show correlations, therefore the particles must 
always be characterized as a quantum state of the entire system. Nuclear Magnetic 
Resonance (NMR) is a physical phenomenon in which electromagnetic radiation 
is absorbed and emitted by the nucleus in a magnetic field. NMR uses Radio Fre-
quency (RF) to produce a strong magnetic field that excites the nuclei of molecules, 
causing them to exist in superposition. The superposition principle underpins both 
quantum coherence and quantum entanglement. In NMR, coherence is a physical 
condition in which numerous spins line up and revolve at the same speed around 
the magnetic field direction. NMR relaxation is the reversal of the NMR process. To 
get the original molecule, NMR relaxation qubits are set in the ground state. In this 
situation, generating EMR must be halted, and the molecules must then lose energy 
in order to reach their ground state configuration. This procedure is carried out at two 
temperatures: room temperature and zero kelvin and is named Reverse Nuclear Mag-
netic Resonance (RNMR). NMR and RNMR may help to convert a DNA sequence to 
qubits and qubits to a DNA sequence, respectively. Part I contains the block diagram, 
architecture, and applications of memory devices such as Random-Access Mem-
ory (RAM), Read-Only Memory (ROM), and Programmable Read-Only Memory 
(PROM), cache memory in quantum, DNA, quantum-DNA and DNA-quantum com-
puting. In Part II, programmable logic devices such as Programmable Logic Array 
(PLA), Field Programmable Gate Array (FPGA), and Complex Programmable Logic 
Device (CPLD) in quantum, DNA, quantum-DNA and DNA-quantum computing are



1.1 Introduction 3

described with their architectures and applications. Quantum, DNA, quantum-DNA, 
and DNA-quantum nanoprocessors are designed in the last part which is Part III. Part 
IV discusses the heat calculation, heat transfer, speed calculation, and data manage-
ment issues in quantum biocomputing. The computing in quantum biology means the 
combination of quantum computing and DNA computing. Computing in quantum 
biology is completely new thing that is going to be introduced here in this book. 

1.1 Introduction 

Compared with today’s classical CMOS-based systems, quantum computers guar-
antee an exponential increase in power. As a result, it is difficult for the human mind 
to perceive this increasing magnitude. So there is real excitement that quantum com-
puters will deliver benefits that are not possible with today’s systems. The design 
of quantum computing-based systems begin with reversible logic circuit synthesis, 
low-power CMOS circuits, and nanotechnology-based systems. Quantum mechani-
cal processes have been proved to be a good choice for constructing reversible gates, 
and these gates are known as quantum gates because quantum mechanics is basically 
reversible. Reversible computing is a form of unconventional computing. Because of 
the unity of quantum mechanics, quantum circuits are rather reversible unless they 
simply “collapse” the quantum states in which they operate. Quantum computing is 
an emergent field of cutting-edge computer science harnessing the unique qualities of 
quantum mechanics to solve problems beyond the ability of even the most powerful 
classical computers. The field of quantum computing contains a range of disciplines, 
including quantum hardware and quantum algorithms. While still in development, 
quantum technology will soon be able to solve complex problems that supercomput-
ers can’t solve, or can’t solve fast enough. By taking advantage of quantum physics, 
fully realized quantum computers would be able to process massively complicated 
problems at orders of magnitude faster than modern machines. For a quantum com-
puter, challenges that might take a classical computer thousands of years to complete 
might be reduced to a matter of minutes. The study of subatomic particles, also known 
as quantum mechanics, reveals unique and fundamental natural principles. Quantum 
computers harness these fundamental phenomena to compute probabilistically and 
quantum mechanically. 

Biocomputing or DNA computing or biological computing is a field that uses 
DNA, biochemistry, and molecular biology rather than traditional silicon chips for 
computations. Recently researchers have emphasized exploring this field because of 
several advantages of DNA computing. For example, Boolean logic uses two input 
or output states, and binary logic faces challenges from non-Boolean logic when 
processing uncertain or imprecise information. Biocomputing is an emerging branch 
of computing that replaces traditional electronic computing with deoxyribonucleic 
acid (DNA), biochemistry, and molecular biology hardware. It may seem strange 
that computation may be done in a test tube using biological molecules rather than 
semiconductor chips. Key takeaways of biocomputing:



4 1 Basic Operations in Quantum Computing and Biocomputing

1. Biological computers (or mini-brains) are 3D cultures of brain tissue and neurones 
that mimic the structure and main functions of our brains. 

2. This technology will make it possible to combine the computational performance 
of the best computers with the energy efficiency of the human brain. 

3. In the future, “bio-computers” could become invaluable tools for research, par-
ticularly the study of certain diseases. 

4. The development of organoid intelligence has been made possible by three tech-
nological breakthroughs: electrophysiology, AI and cerebral organoids. 

While biocomputing is in an early phase, biocomputers have the potential to enable 
far more powerful computing than today’s best computers - while using less energy 
and generating less heat. Furthermore, biocomputers will be able to use parallel 
computing, which will represent a significant improvement upon regular computing, 
and will be able to better self-organize and self-repair. While authoritative estimates 
of the eventual environmental impact of biocomputing do not yet exist, biocomputing 
could potentially reduce our reliance on the silicon and rare earth minerals that power 
today’s computers. 

Millions of natural supercomputers exist inside living organisms. DNA (deoxyri-
bonucleic acid) molecules, which make up human genes, have the ability to execute 
calculations hundreds of times quicker than even the most powerful human-built 
computers. DNA could one day be incorporated into a computer chip to produce 
a “biochip” that will allow computers to run even quicker. Complex mathematical 
problems have already been solved using DNA molecules. 

Quantum computing and DNA computing can be combined to achieve the 
advantages of both. This combination is called quantum biology. Computing in 
quantum biology means quantum-DNA computing and DNA-quantum computing. 
Quantum-DNA computing or quantum biological computing or quantum biocom-
puting explores the potential of using DNA’s structure and properties, including its 
quantum mechanical behavior, to perform computations. While DNA computing 
focuses on using biological molecules for computation, quantum computing utilizes 
quantum mechanical principles, such as superposition and entanglement, to revolu-
tionize information processing. The idea is to leverage DNA’s unique characteristics 
to build quantum computers or to enhance the performance of existing ones. It also 
investigate the potential for harnessing biological systems and processes for quantum 
computation, or for using biological materials to build quantum computers. This field 
investigates if living organisms naturally utilize quantum effects for computation and 
if we can engineer biological systems to perform quantum tasks. The biology-Inspired 
quantum computing focuses on using biological materials (like proteins, DNA, or 
RNA) to build quantum computers or to create quantum computing hardware. It also 
includes hybrid systems where biological systems interact with quantum devices. 
For instance, researchers are exploring using biological scaffolds to hold qubits or 
using biomolecules as qubits themselves. On the other hand, in the world of comput-
ing, scientists and researchers constantly seek new ways to enhance computational 
power and solve complex problems more efficiently. Traditional computing, based 
on classical bits, has made remarkable progress, but it is reaching its limits. However,



1.2 Basic Gates in Quantum Computing 5

a fascinating field of research is emerging at the intersection of biology and quan-
tum physics, known as bioquantum computing or biological quantum computing or 
DNA-quantum computing. This revolutionary approach harnesses the principles of 
quantum mechanics within biological systems, promising unprecedented computa-
tional capabilities. This computing refers to speculative ideas that biological systems 
might perform quantum computations or that we could harness biological processes 
to implement quantum computing. This paradigm is highly exploratory and not yet 
realized in any form, lying at the intersection of quantum physics, biology, and com-
puter science. There are two main interpretations: 

1. Biology as the computer: Certain processes in living organisms might naturally 
exploit quantum effects to compute or process information. For example, it has been 
hypothesized that the brain could be a quantum computer, or that plants perform 
quantum optimizations in photosynthesis. These ideas suggest that evolution might 
have stumbled upon quantum mechanisms to enhance functionality (like efficiency 
of energy transfer or perhaps even consciousness via quantum processes in neurons). 

2. Biology-inspired hardware: Using biological materials or biologically derived 
structures to build quantum computers. For instance, using proteins, DNA, or other 
biomolecules as qubits or as scaffolds to hold and manipulate qubits. This also covers 
hybrid approaches where biological systems interface with quantum systems (like 
a living organism that interacts with a quantum device). The computer that will 
perform all these operations is quantum biocomputer. This chapter will present how 
basic operations can be performed in quantum computing and DNA computing. 

1.2 Basic Gates in Quantum Computing 

If the input and output assignments of a function or circuit are one-to-one, the function 
or circuit is said to be reversible. That is, the outputs of a reversible circuit can be 
calculated uniquely from the inputs, and the inputs may be recovered from the outputs. 

A quantum logic gate, also known as a quantum gate, is a fundamental quantum 
circuit that works with a minimal number of qubits. They are equivalent to classical 
logic gates in conventional digital computers for quantum computers. Unlike many 
classical logic gates, quantum logic gates are reversible. Unitary matrices are used 
to represent them. The most common quantum gates work with one- or two-qubit 
spaces. This means that quantum gates can be characterized by orthonormal 2. ×2 or  
4. ×4 matrices. 

There are only three fundamental gates in quantum computing based on the syn-
thetization of reversible logic circuits are given as follows: 

1. Controlled NOT (CNOT) gate. 
2. Controlled-V gate. 
3. Controlled-V+ gate.



6 1 Basic Operations in Quantum Computing and Biocomputing

Fig. 1.1 Quantum CNOT 
gate 

1.2.1 Quantum Controlled NOT Gate 

The quantum controlled-NOT gate, or simply CNOT gate is a two-qubit operation 
in which the first qubit is known as the control qubit and the second qubit is known 
as the target qubit. Using a combination of CNOT gates and single-qubit rotations, 
any quantum circuit can be simulated to an arbitrary degree of accuracy. 

The CNOT gate utilizes a quantum register with two qubits. The CNOT gate flips 
the second qubit (the target qubit) if and only if the first qubit (the control qubit) is 
.|1 >. That means it performs a classical NOT on the target whenever the control is 
in the state of .|1 >. It is also known as the controlled-x or CX gate. Table 1.1 shows 
the functionality of a quantum controlled-NOT gate. 

Here, the input bits .|A0 > and .|A1 > are the control qubit and the target 
qubit. Quantum CNOT gate produces two outputs where the controlled output is 
.|Q1 >which gets flipped only if the controlled input.|A0 > is.|1 >. During this time 
the output .|Q0 > always remains the same as per the input .|A0 >. 

The next question is, how to draw a circuit diagram of a quantum CNOT gate? 
This is pretty simple. In Table 1.1, CNOT is the quantum NOT operation which is 
controlled by a qubit. Therefore, Pauli X-gate with a controlled qubit is used to design 
the quantum CNOT gate. Figure 1.1 shows the logic circuit diagram of the quantum 
CNOT gate. 

Table 1.1 Operations in quantum CNOT gate 

Input Output 

.|A0 > .|A1 > .|Q0 > . |Q1 >

.|0 > .|0 > .|0 > . |0 >

.|0 > .|1 > .|0 > . |1 >

.|1 > .|0 > .|1 > . |1 >

.|1 > .|1 > .|1 > .|0 >



1.2 Basic Gates in Quantum Computing 7

1.2.1.1 Design Procedure of Quantum CNOT Gate 

In quantum logic circuits, this gate has the simplest architectural design. Easy to 
construct this only in three steps. 

1. First, two superposition-mode qubits are drawn as .|A0 > and .|A1 >, where 
.|A0 > is the control qubit, and .|A1 > is the target qubit. 

2. Then two lines are drawn from these inputs to the target outputs.|Q0 > and.|Q1 >. 
3. Finally, on the.|A1 > line, a NOT gate is drawn and connects it to the.|A0 > line, 

because .|A0 > controls the NOT gate of the target output .|Q1 >. 

1.2.1.2 Working Principle of Quantum CNOT Gate 

The only input to the NOT gate is .|A1 >, and the gate control input is .|A0 >, which 
are termed as CNOT gate. The block diagram of the quantum CNOT gate is shown 
in Fig. 1.2. 

The working procedure of the quantum CNOT gate is given below: 

1. The output value .|Q0 > is always the same as the value of input .|A0 > because 
there is no operation through this line. 

2. In the case of the output value of .|Q1 >, 

(a) When the control qubit .|A0 > is .|0 >, the gate will close and will work as a 
buffer. That means the output value of .|Q1 > is the same as the input value 
.|A1 >. According to CNOT table, when .|A1 > =.|0 > or .|1 > with control 
qubit .|A0 > =.|0 >, the output .|Q1 > is .|0 > and .|1 >, respectively. 

(b) When the control qubit .|A0 > is .|1 >, the gate will open and works as an 
inverter. That means the output value of .|Q1 > is opposite to the input value 
.|A1 >. According to CNOT table, when the.|A1 >=.|0 > or.|1 >with control 
qubit .|A0 > = .|1 >, it flips the  .|A1 > qubit and produces .|1 > and .|0 > as 
outputs in .|Q1 >, respectively. 

From the input and output relation, it is observed that this gate works exactly like a 
classical XOR operation. Therefore, CNOT gate can be used in the quantum XOR 
operation. 

Fig. 1.2 The block diagram of quantum CNOT gate



8 1 Basic Operations in Quantum Computing and Biocomputing

And therefore, the CNOT gate can be described as the gate that maps the basis 
states of input (.|A0 >, .|A1 >) to output (.|Q0 > = .|A0 >, &  .|Q1 > = (.|A0 > XOR 
.|Q1 >)). Figure 1.2 shows the block diagram of the quantum CNOT gate. 

The first experimental realization of a CNOT gate was accomplished, in 1995. 
A single Beryllium ion in a trap was employed in this experiment. The two qubits 
were encoded into the optical state and the vibrational state of the trapped ion. The 
CNOT-operation reliability was estimated to be on the order of 90% at the time of 
the trial. 

1.2.2 Quantum Controlled-V Gate 

The second fundamental gate in quantum computing is the controlled-V gate (or V 
gate) which is shown in Fig. 1.3. 

When the control signal .|A0 > = |0. >, the qubit .|A1 > will pass through the 
controlled part and remain unchanged, i.e.,.|Q1 > =.|A1 >. When.|A0 > = |1. >, then 

the unitary operation V.=.
i+1
2

(
1 −i
−i 1

)
is applied to the input.|A1 >, that is,. |Q1 >

= V (.|A1 >). 

1.2.2.1 Design Procedure of Quantum Controlled-V Gate 

Figure 1.3 shows the circuit diagram of the quantum controlled-V gate. This gate is 
also a two-input gate and the number of output is the same here as well. 

Three steps to construct a quantum controlled-V gate are given below. 

1. First, two superposition-mode qubits are drawn, .|A0 > and .|A1 >. And in this 
gate also, the control qubit is .|A0 >, and the target qubit is .|A1 >. 

2. From these inputs, two lines are drawn to output .|Q0 > and .|Q1 >. 
3. Then V gate is drawn on the .|A1 > line and connect it to the .|A0 > line because 

.|A0 > is the control qubit that controls the V gate of output .|Q1 >. 

Fig. 1.3 Quantum 
controlled-V gate



1.2 Basic Gates in Quantum Computing 9

1.2.2.2 Working Principle of Quantum Controlled-V Gate 

The quantum controlled-V gate’s working principle is not as straightforward as the 
quantum CNOT gate. Consider the operational table of the controlled-V gate as 
shown in Table 1.2. 

It is called quantum controlled-V gate because, as Table 1.2 shows here the outputs 
of the gate depend on the control qubit .|A0 >. 

The working procedure of the quantum controlled-V gate is listed below: 

1. Considering the controlled-V gate, input .|A1 > values as |0. >, |1. >, .|v > = |0. >, 
.|V > = |1. >, .|w > = |0.> and .|W > = |1.> and for control input .|A0 > values are 
|0.> and |1. >. 

2. The output value .|Q0 > is always the same as the input value .|A0 > due to the 
fact that this line does not have any operations. 

3. For the output value of .|Q1 >, 

(a) The controlled-V gate will not open if the control qubit .|A0 > is |0. >, even-
tually will work as a buffer. That means the output value of.|Q1 >will be the 
same as the input value of .|A1 > when the input value of .|A0 > is |0. >. 

(b) When the control qubit .|A0 > is |1. >, the quantum controlled-V gate will 
open and will work with the input values of .|A1 > to produce output . |Q1 >

according to the operational table (Table 1.2) of the controlled-V gate. Two 
intermediate inputs .|v > and .|V > are used for controlled-V gate output 
values. Here the.|v > value is assigned to the V gate output if its input. |A1 >

is |0.> and.|V > value if its input .|A1 > is |1. >. Now, if the input of V gate is 
.|v > then the output will |1.> (flipped) because the.|v > value is the result of 
applying input |0. > to the V gate. In the same way, applying.|V > input to a V 
gate results in an output of |0. >. If the input of a V gate is.|w > then its output 
will |0. >, and if the input of a V gate is .|W > then the target output will be 
|1. >. The inputs.|w > and.|W > are the properties of quantum controlled-V. 

+
gate. 

Table 1.2 Operations in the quantum controlled-V gate 

Input Output 

.|A0 > .|A1 > .|Q0 > . |Q1 >

.|0 > |X.> |0.> |X. >

.|1 > |0.> |1.> |v. >

.|1 > |1.> |1.> |V. >

.|1 > |v.> |1.> |1. >

.|1 > |V.> |1.> |0. >

.|1 > |w.> |1.> |0. >

.|1 > |W.> |1.> |1.>



10 1 Basic Operations in Quantum Computing and Biocomputing

1.2.3 Quantum Controlled-V+ Gate 

The last of three fundamental quantum gates is the quantum controlled-V. 
+ gate (or 

simply, V+ gate). In the controlled-V+ gate when the control signal.|A0 > = |0.>, the 
qubit.|A1 >will pass through the controlled part unchanged, that is,.|Q1 > =.|A1 >. 
When .|A0 > = |1.>, the unitary operation V+ = V.

−1 is applied to the input .|A1 >, 
that is, .|Q1 > = V. 

+ (.|A1>). The controlled-V. 
+ gate is shown in Fig. 1.4. 

1.2.3.1 Design Procedure of Quantum Controlled-V+ Gate 

The design architecture of the quantum controlled-V+ gate is shown in Fig. 1.4. The  
construction is similar to the quantum controlled-V gate, but the difference is in the 
operational part. 

The construction of this fundamental gate is easy which has three steps like the 
other two. 

1. At first, two superposition-mode qubits are drawn.|A0> and.|A1>. And again, the 
control qubit is .|A0>, and the target qubit is .|A1>. 

2. Then two lines from these inputs to produce outputs .|Q0> and .|Q1>. 
3. Subsequently, V+ gate is drawn on the .|A1> line and connect it to the . |A0 >

line because .|A0 > controls the V+ gate of output .|Q1 > depending on the input 
.|A1 >. 

1.2.3.2 Working Principle of Quantum Controlled-V+ Gate 

The controlled-V and the controlled-V+ gates are the two types of square-root-of-not 
gates. If two controlled-V or two controlled-V+ gates are triggered in series, they act 
as an inverter. 

As similar to the controlled-V gate, when the control input is |1. >, the correspond-
ing unitary operator is propagated to the second output, where the unitary operation 

for the controlled-V+ is, V+ =. 1
i+1

(
1 −1

i
i 1

)
. The operation on this gate is shown in 

Table 1.3. 
The quantum controlled-V gate’s operations are described below. 

Fig. 1.4 Quantum 
controlled-V+ gate



1.3 Basic Operations in Quantum Computing 11

Table 1.3 Operations in the quantum controlled-V+ gate 

Input Output 

.|A0 > .|A1 > .|Q0 > . |Q1 >

.|0 > |X.> |0.> |X. >

.|1 > |0.> |1.> |w. >

.|1 > |1.> |1.> |W. >

.|1 > |v.> |1.> |0. >

.|1 > |V.> |1.> |1. >

.|1 > |w.> |1.> |1. >

.|1 > |W.> |1.> |0. >

1. The input qubits .|A0 > and .|A1 > are the target qubits. 
2. The input qubit can be one of from.|A1 > values as |0. >, |1. >, .|w > = |0. >, . |W >

= |1. >, .|v > = |0. >, and .|V > = |1.> and for control input .|A0 > values are |0. >
and |1. >. 

3. Again, the output value.|Q0 > is always the same as the input value.|A0 > because 
there is no operation across this line. 

4. For the value of |Q.1>’s output, 

(a) When the control qubit .|A0 > is |0.> the controlled-V+ gate will not open, 
consequently, the input .|A1 > will work as a buffer. That means the output 
value of .|Q1 > is the same as the input value of .|A1 >. 

(b) When the control qubit .|A0 > is |1.>, the controlled-V+ gate will work as 
per Table 1.3. So, with the input qubits of .|A1 >, the output .|Q1 > will be 
produced according to Table 1.3. The intermediate inputs variables.|w > and 
.|W > as output from the controlled-V+ gate. Here the.|w > value is assigned 
to the controlled-V+ gate output if the input .|A1 > is |0.> and .|W > value if 
the input .|A1 > is |1. >. Now, if the input of the controlled-V+ gate is . |w >

then the output will be |1.> because the .|w > value is the result of applying 
input |0.> to a controlled-V+ gate. Correspondingly, applying .|W > input to 
controlled-V+ gate results in an output of |0. >. And finally, if the input of a 
controlled-V+ gate is .|v > (might come from a controlled-V gate as output) 
then |0.> is obtained as output, and if the input is .|V > then the target output 
will be generated as |1. >. 

1.3 Basic Operations in Quantum Computing 

To perform logical operations, classical computing has three fundamental gates, 
namely OR gate, AND gate, and NOT gate. Also, four additional logic gates are



12 1 Basic Operations in Quantum Computing and Biocomputing

Fig. 1.5 Circuit diagram of 
quantum OR operation 

Table 1.4 Truth table of a quantum OR operation 

.|A0 > .|A1 > . |Q >

.|0 > |0.> |0. >

.|0 > |1.> |1. >

.|1 > |0.> |1. >

.|1 > |1.> |1. >

made up of the fundamental gates such as NOR gate, NAND gate, XOR gate, and 
XNOR gate. In a circuit, logic gates produce decisions based on a combination of 
digital signals coming from its inputs. All classical computations are performed at 
the hardware level using those seven quantum operations (see Fig. 1.5 to Fig. 1.10 
and their corresponding Table 1.4 to Table 1.9 for seven basic quantum operations). 

Specifically, it is possible to construct the classical fundamental gates from quan-
tum fundamental gates so that they behave exactly as quantum computing requires, 
and with them, perform all necessary logical operations in the quantum realm. This 
section will present how to construct the classical fundamental gates for quantum 
computing to perform quantum operations. 

1.3.1 Quantum OR Operation 

A circuit that performs quantum OR operation in quantum logic can be described as 
|Y.> = |A.0> QOR |A.1>, or |Y.> = |A.0> + |A.1>. And if OR is outputted value for 
more than two inputs, then merge them as chain-OR which will give the output as 
follows: |Y.> = |A.0>+ |A.1> + … + |A.n>. 

Figure 1.5 shows the circuit diagram of quantum OR operations which includes 
three quantum controlled-V gates that are connected linearly, one quantum CNOT 
gate, two input qubits |A.0> and |A.1>, and a constant qubit (also known as Ancilla 
qubit) |0. >which is the actual input of the 1st controlled-V gate. Ancilla bits are extra 
bits that are used in computation to achieve certain goals. All these are configured 
in the way depicted in Fig. 1.5. And |Q.> is the resulting qubit which contains the 
quantum value of the quantum OR operations of |A.0> and |A.1>. The truth table of 
quantum OR operation is shown in Table 1.4.



1.3 Basic Operations in Quantum Computing 13

Fig. 1.6 Circuit diagrams of 
quantum NOR operation 

Table 1.5 Truth table of a quantum NOR operation 

.|A0 > .|A1 > . |Q >

.|0 > |0.> |1. >

.|0 > |1.> |0. >

.|1 > |0.> |0. >

.|1 > |1.> |0. >

1.3.2 Quantum NOR Operation 

The quantum NOR operation is nothing but an inverted operation of the quantum OR 
operation. This implies that it will give the output |1.> only when both of the input 
qubits are |0. >. Otherwise, the output is always |0. >. Therefore, an extra quantum NOT 
operation is needed along with the quantum OR circuit to construct the quantum NOR 
operation circuit diagram. The circuit diagram of quantum NOR operation with the 
above idea is shown in Fig. 1.6a. But have a close look at Fig. 1.6b. Why these two 
circuits? Well, any of them can be used to conduct the quantum NOR operation. In 
Fig. 1.6b, |1.> is used as the constant qubit instead, which makes the differences in 
the two circuits, but the result is always the same. 

As mentioned earlier, the operation in Fig. 1.6a is exactly the same as the quantum 
OR operation including a quantum NOT operation that inverts the outputs of the 
quantum OR operation and produces the output of the quantum NOR operation as 
shown in Table 1.5.



14 1 Basic Operations in Quantum Computing and Biocomputing

Fig. 1.7 The circuit diagram 
of quantum AND operation 

This section will describe the working procedure of Fig. 1.6b and will show how 
the quantum NOR results are formed with that circuit for each pattern of input qubits 
of |A.0> and |A.1>. 

1.3.3 Quantum AND Operation 

A circuit that performs quantum AND or QAND operation in Boolean quantum logic 
can be described as |Y.> = |A.0> QAND |A.1>, or |Y.> = |A.0>.|A.1> and to do AND 
operation for more than two input values, it is needed to combine them as chain-AND 
which will give the output as |Y.> = |A.0>.|A.1>. … .|A.n>. 

Figure 1.7 shows the circuit diagram of the quantum AND operation, which 
includes two controlled-V gates, one CNOT gate, and one controlled-V+ gate. And 
it requires three input qubits |A.o>, |A.1>, and a constant qubit of |0.>, respectively, 
where the 1st V gate is controlled by the value of |A.1>, CNOT gate and the 2nd 
controlled-V (which produces the final output) is controlled by the value of |A.0>, 
and the controlled-V+ gate is controlled by the output value of CNOT gate. 

The quantum AND operation’s functionality is shown in the truth table as shown 
in Table 1.6. It will always produce output |0.> if either one of two input qubits or 
both of the input qubits is |0. >. The output is |1.> only when both input qubits are 
|1. >. 

1.3.4 Quantum NAND Operation 

The quantum NAND operation is simply the opposite of the quantum AND operation. 
This implies that it will give the output |0.> only when both of the input qubits are 
|1. >. Otherwise, the output is always |1. >. Therefore, to construct the quantum NAND 
operation circuit diagram, it is needed to apply an extra quantum NOT operation 
in addition to the quantum AND circuit. The circuit diagram of quantum NAND 
operation using the above concept is shown in Fig. 1.8a. 

Let’s have a close look at how to construct quantum NAND in a different way. 
Both  (a) and  (b) of Fig.  1.8 show operational circuit diagrams of quantum NAND 

operation. The quantum NAND operation can be done by using any of them. So far,



1.3 Basic Operations in Quantum Computing 15

Table 1.6 Truth table of a quantum AND operation 

|A.0> |A.1> |Q. >

.|0 > |0.> |0. >

.|0 > |1.> |0. >

.|1 > |0.> |0. >

.|1 > |1.> |1. >

Fig. 1.8 Circuit diagrams of 
quantum NAND operation 

the most familiar one is shown in Fig. 1.8 (a). But take a perceptive look at Fig. 1.8 
(b). In Fig. 1.8 (b), the circuit got changed completely. Here two V+ gates, one CNOT 
gate, and one V gate are required. And |1.> is used as the ancilla bit instead of |0. >. 

As mentioned earlier, the operation in Fig. 1.8 (a) is exactly the same as the 
quantum AND operation including a quantum NOT operation that inverts the outputs 
of the quantum AND operation and produces the output of the quantum NAND 
operation as shown in Table 1.7. 

1.3.5 Quantum XOR Operation 

The logic behind quantum XOR or simply QXOR for a two-valued system (binary 
system) is very simple; if the qubits are the same, the result is |0. > and if the qubits are 
different, the result is |1. >. This operational circuit has already been designed because 
the quantum XOR is exactly the same as the quantum CNOT gate. Figure 1.9 shows



16 1 Basic Operations in Quantum Computing and Biocomputing

Table 1.7 Truth table of a quantum NAND operation 

.|A0 > .|A1 > . |Q >

.|0 > |0.> |1. >

.|0 > |1.> |1. >

.|1 > |0.> |1. >

.|1 > |1.> |0. >

Fig. 1.9 Circuit diagram of 
quantum XOR operation 

Table 1.8 Truth table for quantum XOR operation 

.|A0 > .|A1 > . |Q >

.|0 > |0.> |0. >

.|0 > |1.> |1. >

.|1 > |0.> |1. >

.|1 > |1.> |0. >

the circuit diagram of XOR operation and Table 1.8 shows the truth table for quantum 
XOR operation. 

As it is equivalent to the CNOT gate, its working procedure is already shown. 
In short, |A.0> is the control input and the operation will occur only if the value 

of |A.0> is |1. >. Therefore, for four input patterns, in two cases the operation will be 
held and for the other two the output will be the same as the input value of |A.1>. As  
a result, for input value |A.0> = |1. >, |A.1> = |0.> it will produce |1.> as output, and 
for input value |A.0> = |1. >, |A.1> = |1.> it will produce |0.> as output accordingly. 

1.3.6 Quantum XNOR Operation 

Quantum exclusive NOR or quantum XNOR or simply QXNOR is the inverted 
operation of quantum XOR operation. It inverts the output of the QXOR operation. 
Therefore, adding a quantum NOT gate to the output of the QXOR can construct 
the QXNOR operational circuit. Figure 1.10 shows the circuit diagram of quantum 
XNOR operation and Table 1.9 shows the truth table for the quantum XNOR oper-
ation.



1.4 Basic Operations in Biocomputing 17

Fig. 1.10 Circuit diagram of 
a quantum XNOR operation 

Table 1.9 Truth table for quantum XNOR operation 

.|A0 > .|A1 > . |Q >

.|0 > |0.> |1. >

.|0 > |1.> |0. >

.|1 > |0.> |0. >

.|1 > |1.> |1. >

From Table 1.9, it is observed that the output will be |1.> only if both inputs are 
the same. Otherwise the output will be |0. >. 

1.4 Basic Operations in Biocomputing 

In classical computing, data storage device stores data by converting them into binary 
digits. But in DNA computing, instead of binary digits, information or data will now 
be kept in the form of nitrogen bases A, T, G, and C. These bases will make sequences 
to store data, and encoding and decoding are required to operate with those DNA 
sequences so that the outcomes become meaningful. 

The capacity to generate short DNA sequences artificially allows these sequences 
to be used as inputs for algorithms. DNA has properties that allow it to be used to sim-
ulate classical logic processes. Single-stranded DNA naturally migrates toward com-
plementary sequences to form double-stranded complexes, whereas double-stranded 
DNA wants to be in double-stranded form. 

A program on a DNA computer is executed as a series of synthesizing, extracting, 
modifying, and cloning the DNA strands. Instead of using electrical impulses to rep-
resent bits of information, the DNA computer uses the chemical properties of DNA 
molecules by examining the patterns of combination or growth of the molecules or 
strings. DNA can do this through the manufacture of enzymes, which are biological 
catalysts that could be called the “software,” used to execute the desired calcula-
tion. Enzymes do not function sequentially, working on one DNA at a time. Rather, 
numerous copies of the enzyme can act massively parallel on many DNA molecules 
concurrently. DNA computers work by encoding the problem to be solved in DNA’s 
language: the base-four number system, which includes the base-four values A, T,



18 1 Basic Operations in Quantum Computing and Biocomputing

C, and G, which are more than enough when compared to an electronic computer, 
which only requires two numbers, 0 and 1. 

DNA has copying, pasting, repairing, and many other operations, just like a CPU 
has addition, bit-shifting, logical operators, and so on, that allow it to accomplish even 
the most complex computations. The right sequences are sorted out using genetic 
algorithm methods in a DNA computer, which computes in test tubes or on a glass 
slide coated in 24K gold. 

As mentioned earlier, the sequence of base patterns will store pieces of informa-
tion. In two-valued (binary) DNA operations, consider 

ACCTAG.= true, which is equivalent to binary “1”; and 
TGGATC.= false, which is equivalent to binary “0.” 
These base sequences represent data. With these base sequences all fundamental 

gates and operations will be done in the following sections. 
As mentioned earlier, the sequence of base patterns will store pieces of informa-

tion. In two-valued (binary) DNA operations, consider 
ACCTAG.= true, which is equivalent to binary “1” and 
TGGATC.= false, which is equivalent to binary “0.” 
These base sequences represent data. With these base sequences all fundamental 

gates and operations will be done in the following sections. 

1.4.1 DNA NOT Operation 

The basic binary logical operation is fully conversant to us. As a result, the logical 
function of binary logic gates does not need to be explained again. Only how to 
construct them in the DNA computer to perform DNA computing will be discussed. 
Figure 1.11 shows the operational diagram of the DNA NOT operation. To design 
this, a test tube is needed with the DNA mixture, the annealing temperature is less 
than 60 . ◦C. To perform the operation, the DNase enzyme is needed. And the base 
sequence ACCTAG will be used. 

The DNA NOT operation inverts the input base sequence. The operational table 
shows the input-output mapping in Table 1.10. Remember, the base sequences 
TGGATC, and ACCTAG represents the Boolean false and true respectively. 

The operational logic is pretty straightforward. The DNA bases make pairs only 
if the sequences meet the conditions A-T or C-G. Here, the sequence ACCTAG is 
treated as the base sequence. Now if the input sequence makes a pair with the base 
sequence in the test tube as shown in Fig. 1.12, then they will return the output as 
true. And if they do not make a pair then the output will be false. 

So, how to detect whether the input sequence and the base sequence make pairs 
or not? The answer will be detected by the DNase enzyme.



1.4 Basic Operations in Biocomputing 19

Fig. 1.11 The circuit architecture of a DNA NOT operation 

Table 1.10 The truth table of a DNA NOT operation 

A0 Q 

TGGATC ACCTAG 

ACCTAG TGGATC 

Fig. 1.12 The pair matching 
between the DNA base 
sequences 

1.4.2 DNA OR Operation 

Figure 1.13 shows the operational diagram of DNA OR operation. The logic is as same 
as the binary OR operation in classical computing. The input-output combinations 
of DNA OR operation are shown in Table 1.11. 

To design DNA OR operation, a test tube with the DNA mixture is needed, the 
annealing temperature is 60 . 

◦C approximately. To perform the DNA OR operations 
DNase enzyme is needed. And here the base sequence TGGATC will be used. 

Here the base sequence in the test tube is TCCATC. And the input to the DNA 
OR operation is two DNA sequences. Let the two input sequences be A. 0 and A. 1 and 
the output be Q.



20 1 Basic Operations in Quantum Computing and Biocomputing

Fig. 1.13 The circuit architecture of a DNA OR operation 

Table 1.11 The truth table of a DNA OR operation 

A1 A0 Q 

TGGATC TGGATC TGGATC 

TGGATC ACCTAG ACCTAG 

ACCTAG TGGATC ACCTAG 

ACCTAG ACCTAG ACCTAG 

1.4.3 DNA NOR Operation 

The NOR operation is nothing but the inverted output of the OR operation, both the 
DNA OR and DNA NOT operational systems are designed already; therefore, it’s 
easy to design the operational system for the DNA NOR operation, which is shown 
in Fig. 1.14. 

From the above circuit, it is easy to understand the architecture of the DNA NOR 
operation. To perform DNA NOR operation, first DNA OR operation is needed to 
perform. Then the output of the DNA NOR operation will be inverted by the DNA 
NOT operation. 

The input-output mapping for the DNA NOR operation is shown in Table 1.12. 
And one input-output mapping in Table 1.12, where the inputs are TGGATC and 
ACCTAG, and they produce TGGATC as output which is the inverted output from 
the DNA OR gate. 

As the working procedure of DNA OR is explained before and DNA NOT opera-
tions too, therefore it’s a doodle for us to understand the working procedure of DNA 
NOR operation.



1.4 Basic Operations in Biocomputing 21

Fig. 1.14 The circuit architecture of a DNA NOR operation 

Table 1.12 The truth table of a DNA NOR operation 

A1 A0 Q 

TGGATC TGGATC ACCTAG 

TGGATC ACCTAG TGGATC 

ACCTAG TGGATC TGGATC 

ACCTAG ACCTAG TGGATC 

Table 1.13 The truth table of a DNA NAND operation 

A1 A0 Q 

TGGATC TGGATC ACCTAG 

TGGATC ACCTAG ACCTAG 

ACCTAG TGGATC ACCTAG 

ACCTAG ACCTAG TGGATC 

1.4.4 DNA NAND Operation 

In the structure of DNA OR, TGGATC is used as the base sequence in the test tube. 
The DNA computing system which will perform the operations of DNA NAND 
operation is containing ACCTAG as the base sequence instead of TGGATC. And the 
annealing temperature should be more than 60 . 

◦C to perform this operation. 
The output for the given input sequences that will be produced by the DNA NAND 

operation is shown in Table 1.13.



22 1 Basic Operations in Quantum Computing and Biocomputing

From the above table, it is clear that the DNA NAND will produce an output 
sequence TGGATC only if the given input sequences both are ACCTAG. Otherwise, 
it will always generate ACCTAG as an output. Figure 1.15 shows the architecture of 
the DNA NAND operation. 

As always, consider the set of input sequence patterns, and observe the behavior 
of the system of the DNA NAND operation. Let the two input sequences be A. 0 and 
A. 1. And the output be Q. 

1.4.5 DNA AND Operation 

Normally, the AND operation is implemented first, then invert the output of the AND 
operation, and get the result of the NAND operation. But, in DNA computing, it is 
totally opposite. 

This is because it is easy to implement the NAND operation first in DNA com-
puting. Then by inverting the output of NAND operations, easy to get the output of 
the AND operations. Figure 1.16 is to understand how to get the output of the DNA 
AND operations from the DNA NAND operation. Table 1.14 shows the truth table 
of DNA AND operation. 

From the above table, it is clear that the DNA AND operation will generate the 
output sequence ACCTAG only if the input base sequences both are ACCTAG; 
otherwise, the output sequence will always be TGGATC. 

DNA AND operation is nothing but the inverted value of the DNA NAND opera-
tion. So, at first DNA NAND operation will perform, and then DNA NOT operation 
will be performed to invert the output value of the DNA NAND operation. 

Fig. 1.15 The circuit 
architecture of a DNA 
NAND operation



1.4 Basic Operations in Biocomputing 23

1.4.6 DNA XOR Operation 

Table 1.15 shows the truth table of the DNA XOR operation. It will produce ACCTAG 
when the given input sequences are not the same sequence pattern. And when both 
the inputs are the same, the DNA XOR will generate TGGATC as output. To design 
the architecture of the DNA XOR operation, there is no need for any base mixture as 
none of the sequences produces the DNA XOR output which is shown in Table 1.15. 
The input sequences must be complementary in order to have opposite values, and 
they will bind together to form a double-stranded sequence. 

The logic is very simple. If the input sequences are the same, then they will not be 
able to make bonds together. If bonds are not created, the DNase enzyme will destroy 
them. And the output will be false (TGGATC). And when the input sequences are not 
the same, they will create the DNA double strands, and therefore the DNase enzyme 

Fig. 1.16 The circuit architecture of a DNA AND operation 

Table 1.14 The truth table of a DNA AND operation 

A1 A0 Q 

TGGATC TGGATC TGGATC 

TGGATC ACCTAG TGGATC 

ACCTAG TGGATC TGGATC 

ACCTAG ACCTAG ACCTAG



24 1 Basic Operations in Quantum Computing and Biocomputing

Table 1.15 The truth table of a DNA XOR operation 

A1 A0 Q 

TGGATC TGGATC TGGATC 

TGGATC ACCTAG ACCTAG 

ACCTAG TGGATC ACCTAG 

ACCTAG ACCTAG TGGATC 

Fig. 1.17 The circuit architecture of a DNA XOR operation 

Table 1.16 The truth table of a DNA XNOR operation 

A1 A0 Q 

TGGATC TGGATC ACCTAG 

TGGATC ACCTAG TGGATC 

ACCTAG TGGATC TGGATC 

ACCTAG ACCTAG ACCTAG 

will not affect them. As a result, the output will be true (ACCTAG). The architecture 
of the DNA XOR operation is shown in Fig. 1.17. 

There is no need for a base sequence to perform DNA XOR operations. And the 
required ideal annealing temperature is more than 60 . 

◦C.



1.5 Summary 25

Fig. 1.18 The circuit architecture of a DNA XNOR operation 

1.4.7 DNA XNOR Operation 

As the name suggests DNA XNOR is the inverted output of the DNA XOR operation. 
Therefore, a DNA NOT operational system should be added to the output of the 
DNA XOR operational system to get the output result of the DNA XNOR operation. 
Table 1.16 shows the operations in the DNA XNOR operations. Figure 1.18 shows 
the circuit architecture of the DNA XNOR operations. 

1.5 Summary 

Quantum reversible logic has several fundamental gates such as Pauli gate, Pauli 
X-gate, Hadamard gate, Toffoli gate, Fredkin gate, Deutsch gate, and Swap gate. 
But the synthesized fundamental quantum gates are the controlled-NOT gate, the 
controlled-V gate, and the controlled-V+ gate. The quantum logical expression and 
the classical logical expression are the same but the working procedure is different 
as bit operations and qubit operations are not the same. The classical logic gates and 
operations in quantum circuits are presented in this chapter with their truth tables 
and working principles. 

The architecture of the DNA computer is not like the classical or quantum com-
puter, it uses chemical reactions performed in a test tube to produce the output. The 
processes to perform DNA computation are preparing, mixing and annealing, melt-
ing, amplifying, separating, extracting, cutting, ligating, substituting, marking and 
destroying sequences, and detecting and reading sequences. The DNA operation’s



26 1 Basic Operations in Quantum Computing and Biocomputing

truth tables are performed in the same way as the classical computation. But the 
design of the architecture is totally different. The total execution time is the required 
time to perform the largest pipeline in the operation. The heat required to perform 
a regular operation in DNA computing is certain. The required heat is 284–490 . 

◦C. 
All basic logic operations are presented in this chapter with their architecture, truth 
table, and working principles.



Part I 
Memory Devices in Quantum 

Biocomputing 

Overview 

Both DNA computers and quantum computers have the potential to exceed the power 
of conventional digital computers, though substantial technical difficulties first must 
be overcome. Through coherent superposition of states, quantum computers are more 
powerful than classical Turing machines. DNA computers are evolvable through 
biotechnology techniques. By combining DNA and quantum computers, both of these 
characteristics might be captured. DNA computers could be used to self-assemble 
quantum logic circuits from gates attached to DNA strands. Moreover, quantum 
computers might be implemented directly using the physical characteristics of the 
DNA molecule. Because of quantum mechanics, quantum computers operate in an 
entirely different way from ordinary computers. For quantum computers, the most 
important principle is quantum superposition. In the classical world, when the card 
falls, one of two outcomes is observed, either the card lands face up or face down. In 
the quantum world, both events happen simultaneously, and therefore, the outcome 
is a superposition of the classical states. But more than that, the classical states 
become entangled so that they are correlated with and affect each other. In analogy 
with conventional “bits” of information, quantum mechanical bits of information 
are termed qubits, and carry two possible values, |0 > and |1 >. Macromolecules of 
nucleic acids are the prime conveyers of genetic information. They are composed of 
nucleotide building blocks. In DNA, the nucleotides are the purines adenine (A) and 
guanine (G), and the pyrimidines thymine (T) and cytosine (C). Single-stranded (ss) 
DNA molecules, or oligonucleotides, are formed when the nucleotides are connected 
together with phosphodiester bonds. The single strands of DNA form a double-
stranded (ds) molecule when the nucleotides hydrogen bonds to their Watson-Crick 
complements are, A= T and G = C, and vice versa. In the DNA helix, the intertwined 
strands are complementary, and one strand serves as the template for the replication



28 Part I: Memory Devices in Quantum Biocomputing

of the other. The base pairing of one oligonucleotide to another is called hybridiza-
tion. Because of its importance in biology and medicine, DNA is a well-characterized 
molecule, and many standard laboratory techniques exist for its manipulation. There-
fore, it is a good choice for nanotechnology and unconventional computing systems. 
In this section, several ideas for combining DNA and quantum computing in memory 
devices have been given. The benefit to such a union might be a computationally effi-
cient computer that can be evolved and adapted using DNA manipulation techniques 
from biotechnology. Of course, much work, both theoretical and applied, would be 
involved in approaching such a solution. This section of the book will cover memory 
devices used in quantum computing, Quantum-DNA computing, and DNA-Quantum 
computing. In separate chapters, memory devices such as RAM, ROM, PROM, and 
cache memory will be described in these quantum biocomputing modes.



Chapter 2 
Memory Devices in Quantum Computing 

2.1 Introduction 

Theoretical physics, functional analysis, and algorithmic computer science are all 
bridge fields in quantum computation. Too far, the primary goal of quantum com-
putation research has been to demonstrate that the time required to solve particular 
tasks is less for a quantum computer than for a conventional computer. Quantum 
memory is the capability of a quantum system to store and retrieve quantum infor-
mation encoded in the quantum states of particles such as electrons or photons. It 
is the quantum-mechanical counterpart to conventional computer memory. While 
ordinary memory operates with binary states, quantum memory preserves quantum 
states for subsequent access. These states contain valuable computational data called 
qubits. 

Unlike the classical memory found in everyday computers, the states stored in 
quantum memory can exist in a quantum superposition. Quantum superposition is a 
fundamental principle of quantum mechanics that describes the ability of quantum 
systems to exist in multiple states simultaneously. Mathematically, it means that 
a quantum state can be represented as a linear combination of two or more basis 
states. This characteristic offers significantly greater practical flexibility in quantum 
algorithms compared to classical information storage methods. 

Quantum memory research can be traced back to the early days of quantum infor-
mation science, which emerged in the 1980s and 1990s with foundational work by 
physicists like Richard Feynman, David Deutsch, and Peter Shor, among others. 
Quantum memory is required for the formation of a synchronization tool that can 
match the multiple procedures in a quantum computer, a quantum gate that retains the 
identity of any state, and a method for turning preset photons into on-demand pho-
tons, among other quantum information processing devices. Quantum memory may 
be utilized in a variety of applications, including quantum computing and quantum 
communication. Continuous research and experimentation have enabled the storing 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9_2 

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5349-9_2&domain=pdf
https://doi.org/10.1007/978-981-97-5349-9_2
https://doi.org/10.1007/978-981-97-5349-9_2
https://doi.org/10.1007/978-981-97-5349-9_2
https://doi.org/10.1007/978-981-97-5349-9_2
https://doi.org/10.1007/978-981-97-5349-9_2
https://doi.org/10.1007/978-981-97-5349-9_2
https://doi.org/10.1007/978-981-97-5349-9_2
https://doi.org/10.1007/978-981-97-5349-9_2
https://doi.org/10.1007/978-981-97-5349-9_2
https://doi.org/10.1007/978-981-97-5349-9_2
https://doi.org/10.1007/978-981-97-5349-9_2


30 2 Memory Devices in Quantum Computing

of qubits in quantum memory. Quantum memory is the quantum-mechanical equiva-
lent of conventional computer memory in quantum computing. Unlike conventional 
memory, which stores information as binary states (represented by “1’s” and “0’s”), 
quantum memory saves a quantum state for subsequent retrieval. Qubits (represented 
by “.|1 >” and “.|0 >”), which provide important computing information, are stored 
in these states. Unlike traditional computer memory, the states saved in quantum 
memory can be in a quantum superposition, providing far more practical flexibil-
ity in quantum algorithms than traditional information storage. This chapter will 
present four common memory devices in quantum computing, those are Quantum 
Random-Access Memory (QRAM), Quantum Read-Only Memory (QROM), Quan-
tum Programmable Read-Only Memory (QPROM), and Quantum Cache Memory. 
Quantum memory devices are a mandatory part of quantum computation. So the 
details of those four memory devices will be shown in this chapter. 

2.2 Quantum Random-Access Memory 

A fundamental ability of any computing device is the capacity to store informa-
tion in an array of memory cells. The most flexible architecture for memory arrays 
is random-access memory, or RAM, in which any memory cell can be addressed. 
Semiconductor memories are classified into Random-Access Memories (RAMs) and 
Sequential Access Memories (SAMs) based on access time. A RAM is composed of 
a memory array, an input register (“address register”), and an output register. Each 
cell of the array is associated with a unique numerical address. When the address 
register is initialized with the address of a memory cell, the content of the cell is 
returned to the output register (“decoding”). Just as RAM forms an essential compo-
nent of classical computers, quantum random-access memory (QRAM) will make 
up an essential component of quantum computers, should large quantum comput-
ers eventually be built. Quantum Random Access Memory (QRAM) is a type of 
memory that uses quantum mechanical principles to store and access data. Unlike 
classical RAM, which uses bits (0 or 1), QRAM uses qubits, which can exist in 
a superposition of states, allowing for the simultaneous access of multiple mem-
ory locations. This enables potentially faster and more efficient data processing in 
quantum computers. It has the same three basic components as the conventional 
RAM, but the address and output registers are composed of qubits instead of bits. 
[The memory array can be either quantum or classical, depending on the RAM’s 
usage.] The QRAM can then perform memory accesses in coherent quantum super-
position: if the quantum computer needs to access a superposition of memory cells, 
the address register must contain a superposition of addresses and the QRAM will 
return a superposition of data in a data register, correlated with the address register. 
The possibility of efficiently implementing these devices would yield an exponential 
speedup for pattern recognition algorithms, period finding, discrete logarithm, and 
quantum Fourier transform algorithms over classical data. Moreover, QRAMs are 
required for the implementation of various algorithms, such as quantum searching



2.2 Quantum Random-Access Memory 31

on a classical database, collision finding, element distinctness in the classical and 
quantum settings, and the quantum algorithm for the evaluation of general NAND 
trees. Finally, QRAMs permit the introduction of new quantum computation prim-
itives, such as quantum cryptographic database searches or the coherent routing of 
signals through a quantum network of quantum computers. 

2.2.1 History 

For major memory tasks, early computers employed relays, mechanical counters, 
or delay lines. Serial devices, such as ultrasonic delay lines, could only replicate 
data in the sequence in which it was written. Drum memory could be increased at 
a minimal cost, but retrieving memory objects will need the understanding of the 
drum’s physical arrangement to maximize performance efficiently. For smaller and 
quicker memory like registers, latches made of vacuum tube triodes, and subsequently 
discrete transistors, were utilized. Such registers were big and expensive to employ 
for significant quantities of data; in most cases, only a few dozen or a few hundred 
bits of memory could be given. Starting in 1947, the Williams tube was the first viable 
kind of random-access memory. It used electrically charged dots on the front of a 
cathode ray tube to store data. Memory had random access because the CRT’s electron 
beam could read and write the spots on the tube in any sequence. The Williams tube 
had a capacity of a few hundred to a thousand bits, but it was far smaller, quicker, 
and less power-hungry than individual vacuum tube latches. The Williams tube, 
developed at the University of Manchester in England, supplied the medium for 
the first electronically stored program to be implemented in the Manchester Baby 
computer, which successfully executed a program for the first time on June 21, 
1948. Rather than being created for the Baby, the Williams tube memory was used 
to show the memory’s dependability. Magnetic-core memory was developed until 
the mid-1970s after it was conceived in 1947. Using an array of magnetic rings, 
it became a popular kind of random-access memory. Data might be stored with 
one bit per ring by altering the sense of each ring’s magnetism. Access to every 
memory place in any sequence was feasible since each ring contained a combination 
of address wires to select and read or write it. Until the early 1970s, when solid-
state MOS (metal-oxide-silicon) semiconductor memory superseded magnetic core 
memory in integrated circuits (ICs), magnetic core memory was the conventional 
kind of computer memory system. Permanent (or read-only) random-access memory 
was often built before the introduction of integrated read-only memory circuits, 
employing diode matrices controlled by address decoders or specifically wound core 
rope memory planes. Bipolar memory, which utilized bipolar transistors, was the 
first form of semiconductor memory in the 1960s.



32 2 Memory Devices in Quantum Computing

2.2.2 Basic Definition 

Quantum Random-Access (QRA) memory is the hardware of a computing device 
that stores the operating system (OS), application programs, and data in use so that 
the CPU can access them fast. The main memory in a computer is RAM, or volatile 
memory. This indicates that data is stored in RAM while the computer is turned on, 
but it is lost when the machine is turned off. The OS and other data are reloaded 
into RAM when the machine is restarted, generally from an HDD or SSD. When the 
RAM is full, the computer CPU must go back and forth between the RAM and the 
hard drive to unload the data. Therefore, the smaller the amount of RAM, the slower 
the computer’s operations. 

The internal structure of a memory unit is specified by the number of words it 
contains and the number of bits in each word. Special input lines called address 
lines select one particular word. Each word in memory is assigned an identification 
number, called an address, starting from 0 and continuing with 1, 2, 3, up to 2. k − 1
where k is the number of address lines. The selection of a specific word inside the 
memory is done by applying the k-bit binary address to the address lines. A decoder 
inside the memory accepts this address and opens the paths needed to select the bits 
of the specified word. Computer memories may range from 1024 words, requiring 
an address of 10 bits, to .232 words, requiring 32 address bits. It is customary to refer 
to the number of words (or bytes) in memory with one of the letters: K (Kilo) is 
equal to .210, M (Mega) is equal to .220 and G (Giga) is equal to .230. 2.k-to-. n RAM 
architecture is shown in Fig. 2.1. 

Communication between memory and its environment is achieved through data 
input and output lines, address selection lines, and control lines that specify the 
direction of transfer. The . n data input lines provide the information to be stored 
in memory, and the . n data output lines supply the information coming out of a 
particular word chosen among the .2k available inside the memory. The two control 
inputs specify the direction of transfer desired. When the value of address lines . k . =
2 and the input line .n = 1, it is called 2.2-to-1, 4-to-1 RAM. 

2.2.3 Advantages 

There are many advantages of RAM. Some benefits of quantum RAM include: 

1. RAM is a must to store the data for processing on the CPU. RAM is a component 
that is mandatory to have in a system to allow for the storage of data, which will 
be processed by the CPU. 

2. More RAM is a factor to increase the speed of a computer. 
3. If the CPU wants to read the data from RAM, then it is fast as compared to data 

access from hard disk, CD, DVD, floppy, and USB. 
4. Increases the computer system speed, essentially, the more RAM a system has 

the faster it will operate.



2.2 Quantum Random-Access Memory 33

5. It’s efficient. It’s extremely faster compared to hard drive storage for a CPU to 
read data from. 

6. It can write and read operations. 
7. RAM is power efficient. 
8. The cost is less than SSDs and it operates faster than them. 

2.2.4 Disadvantages 

There are many disadvantages of RAM, which are given below: 

1. Less RAM is a factor in decreasing the speed of a computer. 
2. If the CPU wants to read the data from RAM, then it is slow as compared to data 

access from registers and cache. 
3. RAM is volatile, which means it is difficult to store data for a long time. Unplanned 

circumstances like a power outage can result in data loss. 
4. It is expensive. 

Fig. 2.1 2.k -to-. n RAM



34 2 Memory Devices in Quantum Computing

2.2.5 Basic Functions 

The two operations that a random-access memory can perform are the write and 
read operations. The write signal specifies a transfer-in operation and the read signal 
specifies a transfer-out operation. On accepting one of these control signals. The 
internal circuits inside the memory provide the desired function. The steps that must 
be taken to transfer a new word to be stored into memory are as follows: 

1. Apply the binary address of the desired word to the address lines 
2. Apply the data bits that must be stored in memory to the data input lines. 
3. Activate the write input. 

The memory unit will then take the bits presently available in the input data lines 
and store them in the specified by the address lines. The steps that must be taken to 
transfer a stored word out of memory are as follows: 

1. Apply the binary address of the desired word to the address lines; and 
2. Activate the read input. 

The memory unit will then take the bits from the word that has been selected by the 
address and apply them to the output data lines. The content of the selected word 
does not change after reading. 

RAM’s primary function in a computer is to read and write any data. RAM interacts 
with the hard disk of the computer. An example can be given. When open a Word 
file, the Word file is saved on the computer’s hard disk before it is opened, and the 
Word file is stored in the computer’s RAM as soon as it is opened. 

There are many basic and main functions of computer memory RAM, which are 
given below. 

1. Reading Files: Hard drives can store a vast number of files, but compared to 
other computer components, drives run very slowly. Accessing hard drive files 
especially when those files are scattered across the drive due to fragmentation 
requires the drive to move its mechanical read/write head back and forth and to 
wait for the spinning platters to spin into the correct position. Even though drives 
spin at thousands of rotations per minute, this process causes a noticeable delay 
when reading files. To lessen the slowdown, computers store files in RAM after 
the files are first to read from the drive. RAM has no moving parts (and runs at 
a higher speed than even a solid-state drive) so the files can load very quickly 
during subsequent uses. 

2. Temporary Storage: In addition to storing files read from the hard drive, RAM 
also stores data that programs are actively using but that doesn’t need to be saved 
permanently. By keeping this data in RAM, programs can work with it quickly, 
improving speed and responsiveness. 

3. Loading Applications: Loading a software application is also the main function 
of RAM. Any software or application opens in the computer using RAM itself. 

4. Speed: RAM speed is measured in Megahertz (MHz), millions of cycles per 
second so that it can be compared to any processor’s clock speed.



2.2 Quantum Random-Access Memory 35

Fig. 2.2 Block diagram of a quantum 4-to-1 RAM 

2.2.6 Block Diagram 

Quantum 4-to-1 RAM chip has a memory capacity of four words of one qubit per 
word. This requires a 2-qubit address and a 1-bit bidirectional data bus. The 1-bit 
bidirectional data bus allows the transfer of data either from memory to CPU during 
a read operation or from CPU to memory during a write operation. The read-and-
write inputs specify the memory operation, and the two chip select (CS) control 
inputs are for enabling the chip only when the microprocessor selects it. 

Figure 2.2 represents the Quantum 4-to-1 RAM general organization of the block 
diagram. This quantum RAM consists of four separate “Words” of memory and each 
is single qubits wide. Quantum 4-to-1 RAM block diagram is shown in Fig. 2.2.



36 2 Memory Devices in Quantum Computing

2.2.7 Design Architecture of a 4-to-1 RAM 

RAM consists of three basic components such as decoder, qubit cells, and quantum 
OR circuits. To execute quantum 4-to-1 RAM, the following operations are required: 

1. A quantum 2-to-4 decoder. 
2. Qubit cells and 
3. Quantum OR operations for corresponding minterms. 

Quantum decoder and Quantum OR operation are discussed in earlier chapters. 
Quantum qubit cell needs to be discussed here. 

2.2.7.1 Circuit Design of a Qubit Cell 

The fundamental design of this qubit cell is based on the R-S flip-flop (Fig. 2.3). 
Each cell has three inputs and a single output. The inputs are labeled “.|Select >,” 
“.|R/W >,” and “.|Input >.” The output line is labeled “.|Q >.” To perform the qubit 
cell output, two quantum NOT, six quantum AND, and two quantum NOR operations 
are needed to perform. The circuit design of quantum single-qubit cell is shown in 
Fig. 2.3. 
Step 1: First draw three input qubits.|Input >, .|R/W >, and.|Select >. Two possible 
states for a qubit are the states .|0 > false, and .|1 > true. 
Step 2: Then, draw quantum NOT operation with the .|input > and .|R/W > qubits. 
Step 3: Two-input qubits (NOT operation of.|input > and.|select >) will go through 
quantum AND operations and the output of these operations will go to another 
quantum AND operation with input qubit .|R/W >. 
Step 4: Again, two inputs (.|input > and .|select >) will go through quantum AND 
operations and the output of these operations will go through another quantum AND 
operation with input qubit .|R/W >. 
Step 5: The outputs of Steps 3 and 4 will go to the R-S flip-flop as input. 
Step 6: Finally, the output of R-S flip-flop and .|select > will go to quantum AND 
operation, then this output with NOT of .|R/W > will go through another quantum 
AND operations to produce desired RAM cell qubit output. 

2.2.7.2 Working Procedure of Qubit Cell 

In a sequential device as simple as an R-S flip-flop could be used to remember one 
qubit of data. To develop a complete memory cell, called a qubit cell, we need to 
perform the flip-flop for storage. The number of total quantum cells per word will 
be .m × n, where .m represents words with . n qubits. The cell has three inputs and a 
single output. The inputs are labeled “.|Select >,” “.|R/W >,” and “.|Input >.” The 
output line is labeled “.|Q >.”



2.2 Quantum Random-Access Memory 37

Fig. 2.3 Quantum single-qubit cell 

The “.|Select >” input is used to access the cell, either for reading or writing. 
When the select line is high, “.|1 >,” a memory operation can be performed on this 
cell. When the select line of the binary cell is low, “.|0 >,” the contents of the cell are 
not currently of interest, i.e., at present, the cell is not being read from or written to. 
It can be seen that how “.|Select >” is given this power by noting that both the inputs 
and the output of the underlying R-S flip-flop are routed through and gates and that 
.|Select > is one of the inputs to each of these gates. Thus, if “.|Select >” is low.|0 >, 
the inputs to the R-S flip-flop will stay low .|0 > (meaning that its stored value will 
not change) and the output produced by the cell will be low (regardless of whether 
the actual qubit held in the flip-flop is “.|0 >” or “.|1 >”). 

The next input to examine is “.|R/W >.” A system clock will drive this input. As 
the case is with the clocked R-S flip-flop, a low, “.|0 >,” will signify “.|R >” while a 
high, “.|1 >,” will signify “.|W >.” During the read phase, it will not be possible to 
write to the cell. Likewise, during the writing phase, it will not be possible to read 
the contents of the cell. 

Assume the cell has been selected (i.e., “.|Select >” is high signifying that a 
memory access operation is to be performed on this cell). Furthermore, assume that 
the clock value on the “.|R/W >” line is low (forcing the “negated.|R/W >” to high)  
indicating the cell contents are to be read. In this case, the value output by the cell 
will depend solely on the P-valued of the flip-flop. If P is low, the cell outputs a 
“.|0 >,” if P is high, the cell outputs a “.|1 >.” This is because the AND gate attached



38 2 Memory Devices in Quantum Computing

to the cell’s output line has three inputs: “.|Select >,” “negated .|R/W >,” and P; and 
both “.|Select >” and “negated .|R/W >” are currently high. 

As mentioned earlier, when the cell is being read its contents cannot be modified. 
The reason for this is that the same low value on the “.|R/W >” line that allows the 
cell to be read is fed into the AND gates guarding the inputs to the flip-flop. Thus 
during reads, the inputs to R and S are guaranteed to be low preventing the value 
of the flip-flop from being modified. When the cell is selected and the “.|R/W >” 
line is set to high, signifying a “write” operation, the value placed into the cell will 
depend solely on the state of the “.|Input >” line. The reason for this is that the and 
gates that guard the R and S inputs of the flip-flop will both have two of their inputs 
set high: the “.|Select >” and “.|R/W >” inputs. Thus, if “Input” is high, S (set) will 
receive a high and the flip-flop will store a “.|1 >.” If, on the other hand, “.|Input >” 
is low, then R (reset) which receives a negated version of “.|Input >” will go high 
and the flip-flop will reset to “.|0 >.” Note that having a negated version of the input 
line run into R is a clever idea since it prevents the R-S flip-flop from ever entering 
into its invalid state. (Recall that if R and S are ever set to “.|1 >” at the same time 
the flip-flop enters a stable, but invalid state.) It is worth mentioning that during 
write operations, reading is prohibited. This is easy to see since the AND operation 
guarding the “.|Q >” line receives one of its inputs from “negated .|R/W >” which 
is held low during write operations. Hence, output from the cell will always be low, 
“.|0 >,” during writes, regardless of the actual value on the P line of R-S flip-flop. 
The circuit of quantum qubit cells is shown in Fig. 2.4. 

To perform the quantum 4-to-1 RAM, four selection lines are needed to select 
four quantum qubit cells. The output of quantum 2-to-4 decoder with four output 
qubits will perform as selection input qubit of qubit cells as .|Select >. Figure 2.4 
shows the 4-qubit cells to perform operations on qubit cell outputs from .|Q0 > to 
.|Q3 > for further minterms OR operation. 

2.2.8 Working Principle of a Quantum RAM Memory 

Figure 2.5 presents an implementation of a quantum 4-to-1 RAM. Quantum RAM 
consists of four separate “Words” of memory, where each one is a single-qubit wide. 
The quantum RAM cell has three inputs and one output. The complete circuit of a 
quantum RAM cell is described in Fig. 2.4 with proper explanation. A word consists 
of two quantum RAM cells arranged in such a way so that both qubits can be accessed 
simultaneously. Four words of memory need two address lines. .|A > and .|B > are 
the two-qubit address lines input that goes through a 2-to-4 decoder that selects one 
of the four words. The memory-enabled input enables the decoder. If the memory 
enables is .|0 >, all outputs of the decoder will be .|0 > and in that case, none of 
the memory addresses will be selected. But when the memory enables is .|1 > one 
of the four words is selected. The word is selected by the value in the two address 
lines. When a word has been selected, the read/write input determines the operation. 
During the read operation, the four qubits of the selected word pass to the quantum



2.2 Quantum Random-Access Memory 39

Fig. 2.4 Quantum qubit cells



40 2 Memory Devices in Quantum Computing

Table 2.1 Control input of a memory chip 

.|R/W> Memory operation 

X None 

.|0> Write to the selected word 

.|1> Read from the selected word 

OR gates to the output .|Z1 > terminals. But during the write operation, the data 
which is available in the input lines are transferred into the four quantum cells of the 
selected word. The quantum RAM cells that are not selected become disabled and 
their previous qubit never changes. But when the memory-enabled input that passes 
into the decoder is equal to .|0 >, none of the words are selected, and all quantum 
cells remain unchanged regardless of the value of the read/write input. The control 
input to memory chip in quantum RAM is shown in Table 2.1. 

2.2.9 Applications 

In addition to serving as a temporary storage for the operating system and 
applications, RAM is used in numerous other ways: 

1. Operand stacks. 
2. Register files. 
3. Instruction caches. 
4. DMA buffers. 
5. Instruction memories. 
6. Logic functions. 
7. Message buffers. 
8. Virtual channels. 
9. Digital delay lines. 
10. Sequential machines. 

Virtual Memory 
Most modern operating systems employ a method of extending RAM capacity, 
known as “virtual memory.” A portion of the computer’s hard drive is set aside for 
a paging file or a scratch partition, and the combination of physical RAM and the 
paging file forms the system’s total memory. (For example, if a computer has 2 GB 
of RAM and a 1 GB page file, the operating system has 3 GB total memory available 
to it.) When the system runs low on physical memory, it can “swap” portions of 
RAM to the paging file to make room for new data, as well as to read previously 
swapped information back into RAM. The excessive use of this mechanism results 
in thrashing and generally hampers overall system performance, mainly because 
hard drives are far slower than RAM.



2.2 Quantum Random-Access Memory 41

Fig. 2.5 Circuit architecture of a quantum 4-to-1 RAM



42 2 Memory Devices in Quantum Computing

RAM Disk 
The software can “partition” a portion of a computer’s RAM, allowing it to act as 
a much faster hard drive that is called a RAM disk. A RAM disk loses the stored 
data when the computer is shut down unless memory is arranged to have a standby 
battery source. 

2.3 Quantum Read-Only Memory 

Continuous technological advancement—driven by Moore’s law—electronic 
gadgets and their linked memory systems become simultaneously smaller and 
more efficient. Current storage capacity and other cognitive mechanisms, on the 
other hand, consume more energy. Furthermore, internal thermal resistance and 
other restrictions may hinder further memory storage advancements, even as world-
wide demand for enhanced data storage and retrieval capabilities continues to 
expand. So, the main concern is to provide low-cost, robust, high-density, reliable, 
and energy-efficient memory technologies through designing quantum-based ROM. 
This technology can be written on, read from, and erased rapidly, and not deteriorate 
with time. Though traditional ROM is a slower memory so quantum computing 
enables the creation of new types of computers capable of operating with qubits 
as input states, therefore increasing the processing capacity. This section covers 
the details of quantum ROM (QROM) or quantum read-only memory. In quantum 
computing, QROM is a type of quantum memory used to store pre-defined quantum 
states, similar to how classical ROM stores data. It’s essentially an operator that 
loads classical data into a quantum computer by mapping bitstrings to quantum 
states. While quantum memories hold promise, including QROM, they are currently 
challenging to implement in noisy intermediate-scale quantum (NISQ) computers 
due to scaling issues with the number of address lines. The QROM operator might 
be defined as QROM.|i〉|0 ⊗ m〉 = |i〉|bi〉, where .|i〉 represents an input bitstring, 
.|0 ⊗ m〉 represents an initial quantum state, and .|bi〉 represents the corresponding 
quantum state stored in memory. Quantum memories like QROM hold the potential 
to enable quantum advantage in certain applications, such as quantum machine 
learning. QROM provides a way to bridge classical and quantum computing by 
allowing the transfer of classical data to the quantum realm. 

2.3.1 History 

Scientists have been more interested in the interaction of quantum radiation with 
a variety of particles during the last decade. One such field is quantum memory, 
which maps the quantum state of light onto a collection of atoms before returning 
it to its original shape. Quantum memory is a key component in information pro-
cessing, such as optical quantum computing and quantum communication, and it



2.3 Quantum Read-Only Memory 43

also paves the way for the potential of light-atom interaction. Reconstructing the 
quantum state of light, on the other hand, is a challenging task. Photon qubits may be 
stored in quantum memory based on quantum exchange. In 1993, Kessel and Moi-
seev proposed quantum storage in the single-photon state. In 1998, the experiment 
was examined, and in 2003, it was proven. To summarize, the research of quantum 
storage in the single-photon state is a byproduct of the classical optical data storage 
technique developed in 1979 and 1982. Furthermore, the notion was influenced by 
the increasing density of data storage in the mid-1970s. Optical data storage may 
be accomplished by employing absorbers to absorb various frequencies of light, 
which are then guided to and stored at beam space locations. After 1948, most early 
stored-program computers, such as the ENIAC, used forms of read-only memory as 
non-volatile storage for programs. (Previously, it was not a stored-program computer 
since each program had to be manually wired into the system, which might take days 
or weeks.) Read-only memory was easier to build since it just required a method to 
read stored data rather than alter them in place, and so could be done with extremely 
rudimentary electromechanical devices. When integrated circuits were first intro-
duced in the 1960s, ROM was implemented as arrays of transistors on silicon chips. 
An ROM memory cell, on the other hand, it might be created with fewer transistors 
and may consist of the absence (logical qubit .|0 >) or presence (logical qubit .|1 >) 
of one transistor linking a bit line to a word line. 

2.3.2 Basic Definition 

QROM is an abbreviation for quantum read-only memory. It refers to computer 
memory chips that hold permanent or semi-permanent data and incorporate both 
the quantum decoder and quantum OR operations onto a single integrated circuit 
(IC). The contents of quantum ROM are non-volatile; even if the computer is turned 
off, the contents of quantum ROM persist. It is used to hold a computer’s boot-up 
instructions. Most of the computers have a tiny bit of quantum ROM that contains 
the boot software. This is made up of a few kilobytes of code that instructs the 
computer on what to do when it boots up, such as conducting hardware diagnostics 
and loading the operating system into quantum RAM. The BIOS is the boot firmware 
on a computer. To update the programming in quantum ROM, the quantum ROM 
chips have to be physically removed and replaced. Data saved in quantum ROM 
cannot be electrically changed once the memory device is manufactured. A block 
diagram of an ROM is shown in Fig. 2.6. It consists of n input lines and m output lines. 
Each bit combination of the input variables is called an address. Each bit combination 
that comes out of the output lines is called a word. The number of bits per word is 
equal to the number of output lines. m. An address is essentially a binary number that 
denotes one of the minterms of . n variables. 

Initially, the quantum ROM is a combinational circuit with quantum AND gates 
connected as a quantum decoder and many quantum OR gates equal to the outputs 
in the unit. Therefore, it is a two-level implementation in the sum of minterms form.



44 2 Memory Devices in Quantum Computing

Fig. 2.6 Block diagram of a 
.2n-to-m ROM 

With . n input lines and .m output lines in ROM, the output functions will calculate 
through the sum of minterms form. The number of distinct addresses possible with n 
input variables is . 2n . An output word can be selected by a unique address, and since 
there are .2n distinct addresses in a ROM, there are .2n distinct words that are said to 
be stored in the unit. The word available at the output lines at any given time depends 
on the address value applied to the input lines. Therefore, an ROM is characterized 
by the number of words .2n and the number of bits per word m. For input, . n = 2
and output, .m = 2 the ROM circuit will be called 4-to-2 ROM and the function 
output F. 1 and F. 2 in the sum of minterms form, .

∑
(0, 1, 2, 3). It does not have to 

be a quantum AND-OR implementation but it can be any other possible two-level 
minterms implementation. Thus the second level is usually a wired logic connection 
to facilitate the fusing of links. 

2.3.3 Advantages 

Quantum ROM stores the instructions required for communication between vari-
ous hardware components. As previously stated, it is required for the storage and 
functioning of the BIOS, but it may also be used for basic data management, to store 
software for basic utility functions, and to read and write to peripheral devices. Other 
benefits of a quantum ROM include the following: 

1. Its static nature means it does not need to be refreshed. 
2. It is simple to put to the test. 
3. More dependable than RAM since it is non-volatile and cannot be altered or 

modified unintentionally. 
4. Contents are always known and verifiable. 
5. It is less costly than RAM. 
6. Lower production costs since IC costs are lower. 
7. It is a highly compact device. 
8. Circuits are simple and quantum ROM is more reliable than RAM. 
9. Data can be stored permanently. 
10. It helps to start the computer and load the OS.



2.3 Quantum Read-Only Memory 45

2.3.4 Disadvantages 

There are several drawbacks of quantum ROM, which are listed below: 

1. ROM is read only and cannot be altered. In other words, ROM memory can only 
read data and cannot modify the ROM data. 

2. It is not feasible to make adjustments if they are necessary. 
3. Quantum ROM is a slower form of memory. 
4. Improperly deleting the data of the quantum ROM memory would brick the 

memory. 
5. Some ROM memory types allow the user to rewrite the contents. 

2.3.5 Basic Functions 

On the CPU and other computer equipment, memory devices are used to store vari-
ous types of information such as data, programs, addresses, textual files, and status 
information. Data structures can be split into bits, bytes, words, blocks, segments, 
pages, and other identifiers in memory devices. Information is stored in memory cells 
or memory locations in primary memory. Information that can be accessed is stored 
in memory locations. A single memory access operation must be performed to read 
or write data in a memory location, which necessitates the supply of independent 
control signals to the memory. Memory devices may be classified into two groups 
based on the information of the addressing method: 

1. Memories in which access to places is controlled by addresses and 
2. Memories in which access to locations is controlled by the contents of the memory. 

Such memories belong to the first category, in which each accessible place has an 
address that may be used to choose a memory location and conduct needed oper-
ations. Addresses are used to address these memories. Hardware circuits perform 
address decoding and choose the desired place for a memory access operation in 
such memories. The collection of all addresses available in memory is referred to as 
the memory’s address space. When a computer executes a program of instructions, 
the CPU constantly retrieves (reads) data from memory regions containing (1) the 
program codes indicating the operations to be done and (2) the data to be acted on. 

2.3.5.1 Read Operation 

A random memory enables unrestricted space and time access to any location at any 
address in the address space. The access is possible independently of the order of 
all previous accesses. The access can take place to an address in any order. Each 
location in a random-access memory has independent hardware circuits that provide



46 2 Memory Devices in Quantum Computing

Fig. 2.7 Block diagram of 
quantum 4-to-2 ROM 

the access. These circuits are activated as a result of address decoding. To such 
memories belong semiconductor memories of the ROM types. The most important 
parameters are discussed below: 

1. Memory Capacity or Memory Volume is the number of locations that exist in 
a given memory. Memory capacity is measured in bits, bytes, or words. When 
words are used, the length of a word in qubits has to be given. 

2. Memory access time is the time that separates sending a memory access request 
and the reception of the requested information. The access time determines the 
unitary speed of memory (the reception time of unitary data). The access time is 
small for fast memories. 

3. Memory cycle time is the shortest time that has to elapse between consecutive 
access requests to the same memory location. The memory cycle time is another 
parameter that characterizes the overall speed of the memory. The speed is big 
when the cycle time is small. 

4. Memory transfer rate is the speed of reading or writing data in the given memory, 
measured in qubits/sec. 

2.3.6 Block Diagram 

Consider the block diagram of quantum 4-to-2 ROM shown in Fig. 2.7, the unit 
consists of four words of two input qubits (.|A > and.|B >) each. This implies there 
are two output lines (.|F1 > and .|F2 >) and four distinct words stored in the unit, 
each of which may be applied to the output lines. The particular word selected that is 
presently available on the output line is determined from the two input lines. For two 
input qubits in quantum 4-to-2 ROM, four addresses are specified because .22 = 4. 
To perform minterms of four addresses, quantum 2-to-4 decoder and quantum OR 
operations are required. For each address input qubit, there is a unique selected word. 
Thus, the input qubit address is .|0 > |0 >, word number 0 is selected and it appears 
on the output qubit lines. If the input qubit address is .|1 > |1 >, word number 3 is 
selected and it appears on the output lines. In between, two other input qubit addresses 
can select the other two words.



2.3 Quantum Read-Only Memory 47

Fig. 2.8 Quantum 4-to-2 ROM 

2.3.7 Circuit Architecture 

In quantum 4-to-2 ROM architecture shown in Fig. 2.8, there are three quantum 
operations (NOT, AND, and OR) with three quantum gates (NOT, V, and V+). The 
output of the decoder is performed together with four quantum OR operations and 
produces desired output qubits .|F1 > and .|F2 > of quantum 4-to-2 ROM. 

2.3.8 Working Principle 

According to the truth table of quantum 4-to-2 ROM as shown in Table 2.2 and 
also considering Table 2.1, it is necessary to do the following operations to perform 
desired output qubits: 

[i] For input qubits .|A >, .|B > =.|0 >, .|0 >, .|D0 > line will be open. So, the value 
of .|D0 > will be .|1 > and .|D1 > to .|D3 > will be .|0 >. For the output qubits of 
.|F1 > and.|F2 >, perform OR operations among.|D0 >=.|1 >,.|D1 > =.|0 >,. |D2 >

=.|0 >, and .|D3 > =.|0 > to generate .|1 >.



48 2 Memory Devices in Quantum Computing

Table 2.2 Truth table of quantum 4-to-2 ROM 

.|B > .|A > .|F1 > . |F2 >

.|0 > .|0 > .|1 > . |1 >

.|0 > .|1 > .|1 > . |1 >

.|1 > .|0 > .|1 > . |1 >

.|1 > .|1 > .|1 > . |1 >

[ii] For input qubits .|A >, .|B > =.|1 >, .|0 >, .|D1 > line will be open. So, the value 
of .|D1 > will be .|1 > and .|D0 >, .|D2 > and .|D3 > will be .|0 >. For the output of 
.|F1 > and.|F2 >, perform OR operations among.|D0 >=.|0 >,.|D1 > =.|1 >,. |D2 >

=.|0 > and .|D3 > =.|0 > to generate .|1 >. 
[iii] For input qubits .|A >, .|B > =.|0 >, .|1 >, .|D2 > line will be open. So, the value 
of .|D2 > will be .|1 > and .|D0 >, .|D1 > and .|D3 > will be .|0 >. For the output of 
.|F1 > and.|F2 >, perform OR operations among.|D0 >=.|0 >,.|D1 > =.|0 >,. |D2 >

=.|1 >, and .|D3 > =.|0 > to generate .|1 >. 
[iv] For input qubits .|A >, .|B > =.|1 >, .|1 >, .|D3 > line will be open. So, the value 
of.|D3 > will be.|1 > and.|D0 > to.|D2 > will be.|0 >. For the output of.|F1 > and 
.|F2 >, perform OR operations among .|D0 >=.|0 >, .|D1 > = .|0 >, .|D2 > = .|0 >, 
and .|D3 > =.|1 > to generate .|1 >. 

2.3.9 Applications 

The main concern of quantum ROM application is data storage and memory technol-
ogy. Quantum ROMs are taken to include all semiconductor, non-volatile memory 
devices, and they are used in applications where non-volatile storage of information, 
data, or program codes is needed and where the stored data rarely or never changes. 
There are some of the most common application areas as listed below. 

1. BIOS chip in computers. 
2. Network operating systems. 
3. Storing sound data in electronic musical instruments. 
4. Storage for in-built self-learning functionality in remote-operated transmitters. 

2.4 Quantum Programmable Read-Only Memory 

PROM is programmable read-only memory (PROM) that can be modified once or 
can only be programmed once by a user. This is because PROM chips are manu-
factured with a series of fuses. It is first prepared as blank memory, and then it is 
programmed to store the information. PROM is manufactured as blank memory and



2.4 Quantum Programmable Read-Only Memory 49

programmed after manufacturing. To program the PROM, a PROM programmer or 
PROM burner is used. The process of programming the PROM is called burning 
the PROM. The chip is programmed by burning fuses, which is an irreversible pro-
cess. The open fuses are read as ones, while the burned fuses are read as zeros. By 
burning specific fuses, a binary pattern of ones and zeros is imprinted on the chip. 
This pattern represents the program applied to the ROM. A Quantum Programmable 
Read Only Memory (QPROM) is a theoretical concept exploring the possibility of 
storing and manipulating quantum information in a memory that can be programmed 
once, similar to a standard PROM. It differs from classical PROMs by storing and 
accessing quantum states (qubits) instead of classical bits. 

2.4.1 History 

The PROM was invented in 1956 by Wen Tsing Chow, working for the Arma Divi-
sion of the American Bosch Arma Corporation in Garden City, New York. The 
invention was conceived at the request of the United States Air Force to come up 
with a more flexible and secure way of storing the targeting constants in the Atlas 
E/F ICBM’s airborne digital computer. The patent and associated technology were 
held under a secrecy order for several years while the Atlas E/F was the main oper-
ational missile of the United States ICBM force. The term burn, referring to the 
process of programming a PROM, is also in the original patent, as one of the orig-
inal implementations was to literally burn the internal whiskers of diodes with a 
current overload to produce a circuit discontinuity. The first PROM programming 
machines were also developed by Arma engineers under Mr. Chow’s direction and 
were located in Arma’s Garden City lab and Air Force Strategic Air Command (SAC) 
headquarters. Commercially available semiconductor antifuse-based OTP memory 
arrays have been around at least since 1969, with initial antifuse bit cells dependent on 
blowing a capacitor between crossing conductive lines. Texas Instruments developed 
an MOS gate oxide breakdown antifuse in 1979. A dual-gate-oxide two-transistor 
(2T) MOS antifuse was introduced in 1982. Early oxide breakdown technologies 
exhibited a variety of scaling, programming, size, and manufacturing problems that 
prevented the volume production of memory devices based on these technologies. 
Although antifuse-based PROM has been available for decades, it wasn’t available in 
standard CMOS until 2001 when Kilopass Technology Inc. patented 1T, 2T, and 3.5T 
antifuse bit cell technologies using a standard CMOS process, enabling integration 
of PROM into logic CMOS chips. 

2.4.2 Basic Definition 

QPROM stands for quantum programmable read-only memory, a programmable 
semiconductor memory that can be programmed once by the user and only read out.



50 2 Memory Devices in Quantum Computing

It is a Programmable Logic Array (PLA) of a Non-Volatile Memory (NVM), which 
retains its stored contents even after the supply voltage is switched off. PROMs consist 
of OR gates that are joined together to form an array. In addition to memory elements, 
PROMs have electronic circuitry that enables bit-by-bit programming. They are used 
for the permanent storage of programs. The basic architecture of PROMs consists of 
an input decoder of AND gates and an output matrix of OR gates that are combined. 
This allows each output to be individually linked to any possible input. The individual 
links are created by merging the connections. 2.n-to-.m PROM is shown in Fig. 2.9. 

With. n input lines and. m output lines in programmable ROM, the output functions 
will be calculated through the programmable sum of minterms form. For input,. n = 2
and output, .m = 2, the PROM circuit will be called 4-to-2 PROM and the function 
outputs are F.1 =

∑
(0, 2) and F.2 =

∑
(1, 3). 

2.4.3 Advantages 

The advantages of Quantum Programmable ROM (QPROM) are as follows: 

1. The programming can be done using many types of software and does not rely 
on the hard wiring of the program to the chip. 

2. It is easy to configure any programmable device. 
3. Since it is not possible to un-blow the fuse, the authenticity of the data remains 

intact and it is impossible to remove or alter the contents. 

2.4.4 Disadvantages 

The biggest disadvantage of quantum PROM is that the data once burnt cannot 
be erased or changed when detected with errors. There are several drawbacks of 
QPROM, which are listed below: 

1. The static power consumption is high as the transistors used have higher resistance. 
2. It is not possible for a particular byte to be erased, instead the entire content is 

erased. 
3. The UV-based PROM takes time to program the content. 

Fig. 2.9 2.n-to-.m PROM



2.4 Quantum Programmable Read-Only Memory 51

4. Data of PROM cannot be modified or rewritten if any error has occurred. 

2.4.5 Basic Functions 

PROM is sometimes considered in the same category of the circuit as programmable 
logic, PROM is discussed only in the memory category. Since the PROM architecture 
reaches its limits when many inputs are linked to many outputs, the PLD architecture, 
Programmable Logic Device (PLD), provides a more flexible concept. 

1. It is possible to write data or program only once. However, once it is written, it 
can be read any number of times 

2. A PROM chip is used mainly in the start-up process of a modern computer 
3. A PROM, non-volatile memory stores only several megabytes (MB) of data, up to 

4 MB or more per chip. 

A random memory enables unrestricted in space and time access to any location at 
any address in the address space. The access is possible independently on the order 
of all previous accesses. The access can take place to an address in any order. Each 
location in a random-access memory has independent hardware circuits that provide 
the access. These circuits are activated as a result of address decoding. To such 
memories belong semiconductor memories of the ROM types. The most important 
parameters are memory capacity, memory access time, memory cycle time, and 
memory transfer rate. 

BOOT PROM 

1. Each system has a boot prom chip and a 1mbyte chip is typically located on the 
same board as the CPU. 

2.4.6 Block Diagram 

Consider a quantum 4-to-2 PROM with the general organization of block diagram 
as shown in Fig. 2.10, where the unit consists of four words of two qubits (.|A > and 
.|B >) each. This implies there are two output lines (.|F1 > and .|F2 >) and four 
distinct words stored in the unit, each of which may be applied to the output lines. The 
particular word selected that is presently available on the output line is determined 
from the two input lines. There are only two input qubits in quantum 4-to-2 PROM 
because.22 = 4 and with two-qubit variables can specify four addresses or minterms. 
To perform minterms of four addresses, a quantum 2-to-4 decoder and some quantum 
OR operations for minterms .|F1 >=.

∑
(0, 2) and .|F2 > =

∑
(1, 3) are required.



52 2 Memory Devices in Quantum Computing

Table 2.3 Truth table of quantum 4-to-2 PROM 

.|B > .|A > .|F1 > . |F2 >

.|0 > .|0 > .|1 > . |0 >

.|0 > .|1 > .|0 > . |1 >

.|1 > .|0 > .|1 > . |0 >

.|1 > .|1 > .|0 > . |1 >

2.4.7 Circuit Architecture 

In quantum 4-to-2 PROM architecture as shown in Fig. 2.11, there are two quantum 
NOT and four quantum AND operations that perform quantum 4-to-2 decoder. The 
output of the decoder then performs two quantum OR operations to produce the 
desired output of quantum 4-to-2 PROM. 

2.4.8 Working Principle 

Table 2.3 shows the truth table of quantum 4-to-2 PROM. Following operations are 
performed to get the desired output in quantum 4-to-2 PROM. 
[i] For input qubits .|A >, .|B > =.|0 >, .|0 >, .|D0 > line will be open. So, the value 
of .|D0 > will be 1 and .|D1 > to .|D3 > will be .|0 >. For the output of .|F1 >, the  
quantum OR operation will be performed between .|D0 > and .|D2 > that produces 
.|1 > and for .|F2 >, quantum OR operations will be performed between .|D1 > and 
.|D3 > and generate .|0 >. 
[ii] For input qubits .|A >, .|B > =.|1 >, .|0 >, .|D1 > line will be open. So, the value 
of .|D1 > will be 1 and .|D0 >, .|D2 > and .|D3 > will be .|0 >. For the output of 
.|F1 >, the quantum OR operation will be performed between.|D0 > and.|D2 > that 
produces .|0 > and for .|F2 > quantum OR operations will be performed between 
.|D1 > and .|D3 > and generate .|1 >. 

Fig. 2.10 Block diagram of 
quantum 4-to-2 PROM



2.4 Quantum Programmable Read-Only Memory 53

Fig. 2.11 Circuit architecture of quantum 4-to-2 PROM 

[iii] For input qubits .|A >, .|B > =.|0 >, .|1 >, .|D2 > line will be open. So, the value 
of .|D2 > will be 1 and .|D0 >, .|D1 > and .|D3 > will be .|0 >. For the output of 
.|F1 >, the quantum OR operation will be performed between.|D0 > and.|D2 > that 
produces .|1 > and for .|F2 > quantum OR operations will be performed between 
.|D1 > and .|D3 > and generate .|0 >. 
[iv] For input qubits .|A >, .|B > =.|1 >, .|1 >, .|D3 > line will be open. So, the value 
of .|D3 > will be 1 and .|D0 > to .|D2 > will be .|0 >. For the output of .|F1 >, the  
quantum OR operation will be performed between .|D0 > and .|D2 > that produces 
.|0 > and for.|F2 > OR operations will be performed between.|D1 > and.|D3 > and 
generate .|1 >.



54 2 Memory Devices in Quantum Computing

2.4.9 Applications 

These types of memories are frequently used in embedded systems or microcon-
trollers and also in many other consumer and automotive electronics products. They 
have several different applications such as 

1. Mobile Phones for providing User Specific Selections. 
2. The Video game consoles. 
3. Implantable medical devices. 
4. Radio-Frequency Identification (RFID) tags. 
5. High definition Multimedia Interfaces (HDMI). 

2.5 Quantum Cache Memory 

Cache memory is one of the quickest memory types. It serves as a buffer between the 
CPU and the main memory. Furthermore, it saves the data and instructions that the 
CPU utilizes the most. Quantum Cache Memory (QCM) is an element for prepar-
ing quantum data structures for subsequent quantum processing. The QCM has two 
primary sections: the addressing encoding and information encoding sections. The 
addressing section, referred to in our development as the Address qubits, comprises a 
group dedicated to managing the addresses of data points within the QCM. Concur-
rently, the information section, the information qubits, consists of qubits responsible 
for storing the data points ready for quantum processing. QCM has dynamic adapt-
ability to fulfill the specific requirements of varying algorithms, with the total count 
of qubits within the QCM being dynamically determined based on the data size 
and the algorithmic demands. Memory is a component or system in computing that 
stores data for immediate use in a computer or other computer hardware and dig-
ital electrical devices. The terms memory and major storage or main memory are 
frequently used interchangeably. The word store is an old term for memory. Com-
puter memory operates at a high speed compared to storage that is slower but offers 
higher capacities. If needed, contents of the computer memory can be transferred 
to storage; a common way of doing this is through a memory management tech-
nique called virtual memory. Modern memory is implemented as a semiconductor 
memory, where data is stored within memory cells built from MOS transistors and 
other components on an integrated circuit. There are two main kinds of semiconduc-
tor memory, volatile and non-volatile. Examples of non-volatile memory are flash 
memory and ROM, PROM, EPROM, and EEPROM memory. Examples of volatile 
memory are dynamic random-access memory (DCache) used for primary storage 
and static random-access memory (SCache) used for CPU cache. Most semiconduc-
tor memory is organized into memory cells each storing one bit (0 or 1). The flash 
memory organization includes both one bit per memory cell and a multi-level cell 
capable of storing multiple bits per cell. The memory cells are grouped into words 
of fixed word length, for example, 1, 2, 4, 8, 16, 32, 64, or 128 bits. Each word can



2.5 Quantum Cache Memory 55

be accessed by a binary address of N bits, making it possible to store 2N words in 
the memory. A CPU cache is hardware. A cache is used by the central processing 
unit (CPU) of a computer to reduce the average cost (time or energy) to access data 
from the main memory. A cache is a smaller, faster memory, located closer to a 
processor core, which stores copies of the data from frequently used main memory 
locations. Most CPUs have a hierarchy of multiple cache levels (L1, L2, often L3, 
and rarely even L4), with separate instruction-specific and data-specific caches at 
level 1. Other types of caches exist (that are not counted toward the “Cache size” 
of the most important caches mentioned above), such as the translation lookaside 
buffer (TLB) which is a part of the memory management unit (MMU) as well as it 
is also the part of the most of the CPU. 

2.5.1 Operations 

It is placed between the main memory and the CPU. Moreover, for any data, the CPU 
first checks the cache and then the main memory. 

2.5.1.1 Levels of Cache Memory 

There can be various levels of cache memory, they are as follows: 
Level 1 (L1) or Registers 
It stores and accepts the data which is immediately stored in the CPU such as 
in instruction register, programmable cache memory, cache counter, accumulator, 
address register, etc. 
Level 2 (L2) or Cache Memory 
It is the fastest memory that stores data temporarily for fast access by the CPU. 
Moreover, it has the fastest access time. 
Level 3 (L3) or Main Memory 
It is the main memory where the computer stores all the current data. It is a volatile 
memory which means that it loses data on power OFF. 
Level 4 (L4) or Secondary Memory 
It is slow in terms of access time. But, the data stays permanently in this memory. 

Cache is implemented in hardware as a block of memory for storing data that is 
likely to be used again. Caches are commonly used by CPUs and hard disk drives 
(HDDs), as well as web browsers and web servers. A cache is a collection of entries. 
Each item contains related data, which is a duplicate of the identical data stored in a 
backup storage. Each entry additionally includes a tag that identifies the data in the 
backup store from which the entry is a copy. Tagging enables stacked cache-oriented 
algorithms to operate simultaneously without differential relay interference.



56 2 Memory Devices in Quantum Computing

Fig. 2.12 2.k -to-n Cache memory 

2.5.2 Basic Definition 

The steps to access the data from cache memory are 

1. A request is made by the CPU. 
2. The cache is checked for data. 
3. If the data is found in the cache it is returned to the CPU (this is called a cache 

hit). 
4. If the data is not found in the cache then the data will be returned from the main 

memory. 

Cache memory is fast because 

1. In the case of a CPU cache, it is faster because it’s on the same die as the processor. 
In other words, the requested data doesn’t have to be bussed over to the processor; 
it’s already there. 

2. In the case of the cache on a hard drive, it’s faster because it’s in solid-state mem-
ory, and not still on the rotating platters. 

3. In the case of the cache on a website, it’s faster because the data has already been 
retrieved from the database (which, in some cases, could be located anywhere in 
the world). 

So it’s about locality, mostly. Cache eliminates the data transfer step. Structure of 
2.k-to-. n cache memory is shown in Fig. 2.12. 

Communication between memory and its environment is achieved through data 
input and output lines, address selection lines, and control lines that specify the 
direction of transfer. The . n data input lines provide the information to be stored 
in memory, and the . n data output lines supply the information coming out of a 
particular word chosen among the 2. k available inside the memory. The two control 
inputs specify the direction of transfer desired.



2.5 Quantum Cache Memory 57

2.5.3 Advantages 

The advantages of quantum cache memory are as follows: 

1. It is faster than the main memory. 
2. The access time is quite less in comparison to the main memory. 
3. The speed of accessing data increases, hence the CPU works faster. 
4. Moreover, the performance of the CPU also becomes better. 
5. The recent data is stored in the cache, and therefore the outputs are faster. 

2.5.4 Disadvantages 

Some disadvantages of quantum cache memory are as follows: 

1. It is quite expensive. 
2. The storage capacity is limited. 
3. It is expensive. 

2.5.5 Basic Functions 

1. The CPU first checks any required data in the cache. Furthermore, it does not 
access the main memory if that data is present in the cache. 

2. On the other hand, if the data is not present in the cache then it accesses the main 
memory. 

3. The block of words that the CPU accesses currently is transferred from the main 
memory to the cache for quick access in the future. 

4. The hit ratio defines the performance of the cache memory. 

2.5.5.1 Cache Performance 

The performance of the cache is in terms of the hit ratio. It is the ratio of the number 
of hits to the total number of accesses. 

The CPU searches the data in the cache when it requires writing or reading any 
data from the main memory. In this case, two cases may occur as follows: 

1. If the CPU finds that data in the cache, a Cache hit occurs and it reads the data 
from the cache. 

2. On the other hand, if it does not find that data in the cache, a Cache miss occurs. 
Furthermore, during cache miss, the cache allows the entry of data and then reads 
data from the main memory.



58 2 Memory Devices in Quantum Computing

3. Therefore, the hit ratio can be defined as the number of hits divided by the sum 
of hits and misses. 

Hit ratio = hit / (hit + miss) = number of hits/total accesses. 
Also, the cache performance can be improved by the following ways: 

1. Using a higher cache block size. 
2. Higher associativity. 
3. Reducing the miss rate. 
4. Reducing the time to hit in the cache. 

2.5.6 Block Diagram 

A 4-to-1 cache memory chip has a memory capacity of four words of one qubit per 
word. This requires a 2-qubit address and a 1-bit bidirectional data bus. The 1-bit 
bidirectional data bus allows the transfer of data either from memory to CPU during 
a read operation or from CPU to memory during a write operation. The read-and-
write inputs specify the memory operation, and the two chip select (CS) control 
inputs are for enabling the chip only when the microprocessor selects it. 

Figure 2.13 represents the quantum 4-to-1 cache general organization of block dia-
gram cache memory. This quantum cache memory consists of four separate “Words” 
of memory and each is single qubits wide. The quantum RAM cell has three inputs and 
one output. Block diagram of quantum 4-to-1 cache memory is shown in Fig. 2.13. 

2.5.7 Design Architecture of Quantum RAM 

Quantum cache memory consists of three basic components. Circuit architecture of 
quantum RAM cell is shown in Fig. 2.14. To execute quantum 4-to-1 cache memory, 
following operations are required. 

1. A quantum 2-to-4 decoder. 
2. Quantum RAM cells. 
3. Quantum OR operations for corresponding minterms. 

Quantum decoder and quantum OR operations are discussed before. 

2.5.7.1 Circuit Design of Quantum RAM Cell 

The fundamental design of this qubit cell is based on the D flip-flop (Fig. 2.14). 
To begin with, the cell has three inputs and a single output. The inputs are labeled 
“.|Select >,” “.|R/W >,” and “.|Input >.” The output line is labeled “.|output >.” To



2.5 Quantum Cache Memory 59

Fig. 2.13 Block diagram of quantum 4-to-1 cache memory 

perform the quantum cache memory cell output, two quantum NOT, three quantum 
AND, and four quantum NAND operations are required. 
Step 1: 
First draw three input qubits .|Input >, .|R/W > and .|Select >. Two possible states 
for a qubit are the states .|0 > false, and .|1 > true. 
Step 2: 
Draw quantum NOT operation with the .|Input > and .|R/W > qubits. 
Step 3: 
Two input qubits (.|R/W > and.|select >) will go through quantum AND operations. 
Step 4: 
Again, Two input qubits (NOT of .|R/W > and .|select >) will go through quantum 
AND operations. 
Step 5: 
The outputs of Step 4 and NOT of qubit .|input > will go to quantum NAND oper-
ations. Also, the outputs of Step 4 and qubit .|input > will go to another quantum 
NAND operation.



60 2 Memory Devices in Quantum Computing

Fig. 2.14 Circuit architecture of quantum RAM cell 

Step 6: 
The outputs of Step 5 will go to the D flip-flop as input. 
Step 7: 
Finally, D flip-flop output and Step 3 output qubit will go to a quantum AND oper-
ation, then this output with NOT of .|R/W will go through another quantum AND 
operation to produce the desired quantum cache memory .|output> qubit. 

2.5.7.2 Working Procedure of Quantum RAM Cell 

A sequential device as simple as a D flip-flop could be used to remember one bit of 
data. To develop a complete memory cell, called a qubit cell, based on the flip-flop. 
The number of total quantum cells per word will be m .× n where m represents 
words with n bits. The “.|select >” input is used to access the cell, either for reading 
or writing also used to access anyone quantum RAM cell when there is more than 
one quantum RAM cell. When the select line is high or .|1 >, the cell performs the 
memory operation. But when the select line of the quantum RAM cell is low or 
.|0 > the cell is not interested to perform a read from or written to. The next input 
qubit is “.|R/W >” where a system clock will conduct this input. If the clock value 
on the read/write line is .|0 >, this will signify “read” and when it is .|1 >, it will  
perform the “write” phase. When such a cell is selected and in “read” mode, the



2.5 Quantum Cache Memory 61

current value of its underlying flip-flop will be transferred to the cell’s output line. 
When the cell is selected and in “write” mode, an input data signal will determine 
the value remembered by the flip-flop. 

To perform the quantum 4-to-1 cache memory, four selection lines are needed 
to design four quantum RAM cells. The output of quantum 2-to-4 decoder with 
four output qubits will perform as selection input qubit of quantum RAM cells. 
Figure 2.15 shows the 4 quantum RAM cells to perform.|Q0 > to .|Q3 > for further 
minterms operation. 

2.5.8 Circuit Architecture of Quantum Cache Memory 

In quantum 4-to-1 cache memory architecture as shown in Fig. 2.16, two address lines 
with one ancilla bit are needed for simulating 4-to-1 quantum cache memory and each 
address line needs to be in CNOT form as well. These address line combinations will 
be the input of 2-to-4 decoders which consists of four quantum AND gates and this 
decoder has one enable input. Four select lines from this decoder are obtained and 
each select line will go through each cache memory cell. Note that word calculation 
of cache memory will be .2k where k is the address line and 2. k is the total words of 
.n-bit and decoder combination will be k. ×2. k . This two-qubit cache memory consists 
of four separate cache memory cells and each cell has three inputs- .|D0 >, anyone 
selects a line and read/write inputs. The obtained output from four quantum cache 
memory cells will be the input of a quantum OR gate which produces the final output. 
This is the whole design procedure of 4-to-1 quantum cache memory. 

2.5.9 Working Principle 

Figure 2.16 represents the implementation of 4-to-1 quantum cache memory. This 
quantum cache memory consists of four separate “Words” of memory and each is 
one qubits wide. The quantum cache memory cell has three inputs and one output. 
The complete circuit of a quantum cache memory cell is described in Fig. 2.16 with 
proper explanation. A word consists of two quantum cache memory cells arranged 
in such a way so that both qubits can be accessed simultaneously. Four words of 
memory need two address lines..|A > and.|B > are the two-qubit address line inputs 
that goes through a 2-to-4 decoder that selects one of the four words. The memory-
enabled input enables the decoder. If the memory enabled is .|0 >, all output of the 
decoder will be.|0 > and in that case, none of the memory addresses will be selected. 
But when the memory enabled is .|1 >, one of the four words is selected. The word 
is selected by the value in the two address lines. When a word has been selected, the 
read/write input determines the operation. During the read operation, the four qubits 
of the selected word pass to the quantum OR gates to the output.|Z1 > terminals. But 
during the write operation, the data which is available in the input lines are transferred



62 2 Memory Devices in Quantum Computing

Fig. 2.15 Quantum RAM cells



2.5 Quantum Cache Memory 63

Fig. 2.16 Circuit architecture of quantum 4-to-1 cache memory 

into the four quantum cells of the selected word. The quantum cache memory cells 
that are not selected become disable and their previous qubit never changes. But 
when the memory-enable input that passes into the decoder is equal to .|0 >, none



64 2 Memory Devices in Quantum Computing

Table 2.4 Control input to memory chip 

.|R/W > Memory Operation 

X None 

.|0 > Write to the selected word 

.|1 > Read from the selected word 

of the words are selected, and all quantum cells remain unchanged regardless of the 
value of the read/write input as shown in Table 2.4. 

2.5.10 Applications 

The software can “partition” a portion of a computer’s cache memory, allowing it to 
act as a much faster hard drive that is called a cache memory disk. A cache memory 
disk loses the stored data when the computer is shut down unless memory is arranged 
to have a standby battery source. Most modern operating systems employ a method 
of extending cache memory capacity, known as “virtual memory”. A portion of the 
computer’s hard drive is set aside for a paging file or a scratch partition, and the 
combination of physical cache memory and the paging file forms the system’s total 
memory (For example, if a computer has 2 GB of cache memory and a 1 GB page 
file, the operating system has 3 GB total memory available to it). When the system 
runs low on physical memory, it can “swap” portions of cache memory to the paging 
file to make room for new data, as well as to read previously swapped information 
back into cache memory. Excessive use of this mechanism results in thrashing and 
generally hampers overall system performance, mainly because hard drives are far 
slower than cache memory. 

2.6 Summary 

This chapter has presented the details of quantum memory devices. The history, basic 
definition and functions, block diagram and circuit diagram and working principle, 
applications and more information on RAM, ROM, PROM, and cache memory in 
quantum computing. With the advancement of modern science, these quantum mem-
ory devices will be developed and easier to implement everywhere. The quantum 
computing is an exciting field for researchers, so in the upcoming future, it will 
overcome all current difficulties very soon.



Chapter 3 
Memory Devices in Quantum-DNA 
Computing 

3.1 Introduction 

Quantum computing and DNA computing are gaining attention as alternatives to 
classical computing systems. There exist some quantum algorithms which are sig-
nificantly faster than their conventional counterparts and these processes establish 
quantum computing as a superior future technology that involves quantum circuits 
and quantum gates. Traditional silicon computers consume much more power as com-
pared to the computing systems, based on Deoxyribonucleic Acid (DNA), whereas 
DNA-based logic gates are stable and reusable. DNA computation might save a 
billion times the energy of an electrical computer while storing data in a trillion 
times less space. DNA computing mechanism for accurately storing and retrieving 
information inside a DNA sequence. A novel logic gate design based on chemi-
cal reactions is presented in which observance of double-stranded sequences indi-
cates a truth evaluation. Both of these properties might be captured by integrating 
quantum-DNA computing. In this chapter, combined quantum and DNA computing 
are discussed, a novel theoretical methods for designing different memory devices 
considering a binary logic system. This is an entirely new way of merging these 
two technologies and representing memory devices in a computer architecture. In 
quantum biocomputing or quantum-DNA computing, this chapter will cover all four 
memory devices. 

3.2 Quantum-DNA Random-Access Memory 

A Quantum Random Access Memory (QRAM) is a quantum computing memory 
technology that leverages quantum principles to store and retrieve data efficiently. 
In analogy to classical RAM, QRAM allows for accessing any memory location 
in a superposition of states. This means it can hold and access multiple pieces of 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9_3 

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5349-9_3&domain=pdf
https://doi.org/10.1007/978-981-97-5349-9_3
https://doi.org/10.1007/978-981-97-5349-9_3
https://doi.org/10.1007/978-981-97-5349-9_3
https://doi.org/10.1007/978-981-97-5349-9_3
https://doi.org/10.1007/978-981-97-5349-9_3
https://doi.org/10.1007/978-981-97-5349-9_3
https://doi.org/10.1007/978-981-97-5349-9_3
https://doi.org/10.1007/978-981-97-5349-9_3
https://doi.org/10.1007/978-981-97-5349-9_3
https://doi.org/10.1007/978-981-97-5349-9_3
https://doi.org/10.1007/978-981-97-5349-9_3


66 3 Memory Devices in Quantum-DNA Computing

data simultaneously, unlike classical RAM which can only hold one value at a time. 
When in the biological computing or DNA computing or biocomputing, QRAM 
could be used to model and simulate complex biological systems, such as protein 
folding or DNA sequencing, by storing and accessing vast amounts of data related 
to these systems in a superposition of states, this QRAM is called quantum-DNA 
RAM or quantum biological computing RAM or quantum biocomputing RAM. This 
memory could lead to faster and more efficient simulations and potentially new 
insights into biological processes. Its design consists of various devices such as 
quantum and DNA logic gates and decoder for the quantum-DNA 4-to-1 random-
access memory. Quantum-DNA RAM is a basic but it is very important thing in 
the computer system. So, the quantum-DNA RAM is a mandatory part of quantum-
DNA computing system. Therefore, integrated computing system as quantum-DNA 
for RAM is the main concern of this section. 

3.2.1 Block Diagram 

Figure 3.1 represents the block diagram of quantum-DNA 4-to-1 RAM with NMR 
relaxation in normal room temperature, consisting of four separate “Words” of 
memory and each is single sequence wide. 

3.2.2 Working Principle 

Circuit architecture of quantum-DNA RAM memory with NMR relaxation in normal 
room temperature is shown in Fig. 3.2. This quantum RAM consists of four separate 
“Words” of memory and each is 1 qubit wide. The quantum RAM cell has three 
inputs and one output. The complete circuit of a quantum RAM cell is described 
in Fig. 8 with proper explanation. A word consisting of two quantum RAM cells is 
arranged in such a way so that both qubits can be accessed simultaneously. Four 
words of memory need two address lines. |A.> and |B.> are the two-qubit address 
lines input that goes through a 2-to-4 decoder that selects one of the four words. The 
memory-enabled input enables the decoder. If the memory enables is |0. >, all output 
of the decoder will be |0.> and in that case, none of the memory addresses will be 
selected. But when the memory enabled is |1. >, one of the four words is selected. 
The word is selected by the value in the two address lines. When a word has been 
selected, the read/write input determines the operation. During the read operation, 
the four qubits of the selected word pass to the DNA OR gates to the output Z1 
terminals. But during the write operation, the data which is available in the input 
lines are transferred into the four quantum cells of the selected word. The quantum 
RAM cells that are not selected are become disabled and their previous qubit never 
changes. But when the memory-enabled input that passes into the decoder is equal



3.3 Quantum-DNA Read-Only Memory 67

to |0. >, none of the words are selected, and all quantum cells remain unchanged 
regardless of the value of the read/write input. 

3.3 Quantum-DNA Read-Only Memory 

DNA computing can save money, billions of energy in the electrical computer when 
storing data in spatial space. DNA computing, precanic coloring mechanism, and 
pick-up information within the DNA sequence. In addition, computing calculations 
of DNA nanotubes are very important as essentially billion DNA molecules of chem-
ical reactions for calculations can be performed simultaneously. In other way, a 
Quantum Read-Only Memory (QROM) is a type of quantum memory that allows 
classical data to be loaded into a quantum computer. QROM is essential for storing 
and accessing data within a quantum computing environment. It works by represent-
ing data as bitstrings, which are then loaded into the quantum memory as qubits. 
While QROM is primarily associated with quantum computing, it is also relevant 
to the emerging field of biological computing, where researchers explore using bio-
logical systems to perform computations. In this context, QROM could potentially 

Fig. 3.1 Block diagram of quantum-DNA 4-to-1 RAM



68 3 Memory Devices in Quantum-DNA Computing

Fig. 3.2 Circuit architecture of quantum-DNA 4-to-1 RAM



3.3 Quantum-DNA Read-Only Memory 69

Fig. 3.3 Block diagram of quantum-DNA 4-to-2 ROM 

be used to store and retrieve biological data, such as DNA sequences, or to imple-
ment biological algorithms. In this case, the QROM is called quantum-DNA ROM 
or quantum biocomputing ROM or quantum biological computing ROM. Therefore, 
integrated computing systems as quantum-to-DNA for ROM memory are the main 
concern of this section. 

3.3.1 Block Diagram 

Quantum-DNA 4-to-2 ROM general organization of block diagram (Fig. 3.3), the 
unit consists of four words of two input qubits (|A.> and |B. >) each. This implies 
there are 2-DNA sequence output lines (F1 and F2) and four distinct words stored 
in the unit, each of which may be applied to the output lines. According to the 
block diagram, the operations of 4-to-2 ROM have been divided into two distinct 
computing systems as the input section will perform in quantum and in the output 
DNA sequences will be produced. 

So, input qubits |A.> and |B.> in quantum computing operations store the qubits 
in cache memory and transform those qubits to DNA sequences to form outputs F1 
and F2 in DNA computing operations.



70 3 Memory Devices in Quantum-DNA Computing

3.3.2 Design Procedure 

Quantum-DNA 4-to-2 ROM with NMR relaxation in normal room temperature is 
depicted in Fig. 3.4. To design a quantum-DNA 4-to-2 ROM circuit (considering 
NMR relaxation), the input values are in qubit (quantum computing) and the output 
will be DNA sequence (DNA computing) at normal room temperature. 
Step 1: 
First, draw two input qubits |A. > and |B. >. Two possible qubits are |0. > false and |1. >
true. These two will produce four combinations of two input qubits. 
Step 2: 
To design a decoder, draw two quantum NOT operations and four quantum AND 
operations. 
Step 3: 
After getting qubits of all the corresponding values from four quantum AND oper-
ations of the 2-to-4 decoder, it needs to store all the quantum bits into the cache 
memory. Quantum cache memory is actually used for storing logical qubits and 
error correction. Quantum cache also increases the logical qubit collection. 
Step 4: 
After storing qubits of all the corresponding values from four quantum AND oper-
ations in cache memory, NMR relaxation is performed to transform qubits to DNA 
sequences. Here, NMR relaxation is done at room temperature, where it doesn’t need 
to emit EMR.



3.3 Quantum-DNA Read-Only Memory 71

Fig. 3.4 Circuit architecture of quantum-DNA 4-to-2 ROM



72 3 Memory Devices in Quantum-DNA Computing

Step 5: 
Finally, after NMR relaxation, the DNA sequences are found from qubits and these 
will go through two DNA OR gates to produce the desired quantum-DNA 4-to-2 
ROM output sequences. 

3.3.3 Working Principle 

Truth table of quantum-DNA 4-to-2 ROM is shown in Table 3.1. The operational 
procedures of quantum-DNA 4-to-2 ROM are discussed as follows: 
[i] For input combination A, B = |0. >, |0. >, |D0. > line will be open and |D1. > to |D3. >
will be closed. So, the value of |D0. >= |1. >, |D1.> to |D3.> = |0.> will be stored 
in cache memory and after NMR relaxation all of these will transform into DNA 
sequence as D0 = ACCTAG and D1 to D3 = TGGATC. For the outputs of F1 and 
F2, perform DNA OR operations among D0 to D3 and generate ACCTAG as the 
desired output. 
[ii] For input combination A, B = |1. >, |0. >, |D1.> line will be open and |D0. >, |D2. >
and |D3.> will be closed. So, the value of |D1. >= |1. >, |D0.> |D2. >, |D3.> =|0.> will 
be stored in cache memory and after NMR relaxation all of these will transform into 
DNA sequence as D1 = ACCTAG and D0, D2, D3 = TGGATC. For the outputs of 
F1 and F2, perform DNA OR operations among D0 to D3 and generate ACCTAG 
as the desired output. 
[iii] For input combination A, B = |0. >, |1. >, |D2. > line will be open and |D0. >, |D1. >
and |D3.> will be closed. So, the value of |D2. >= |1. >, |D0.> |D2. >, |D3.> = |0.> will 
be stored in cache memory and after NMR relaxation all of these will transform into 
DNA sequence as D2 = ACCTAG and D0, D1, D3 = TGGATC. For the outputs of 
F1 and F2, perform DNA OR operations among D0 to D3 and generate ACCTAG 
as the desired output. 
[iv] For input combination A, B = |1. >, |1. >, |D3. > line will be open and |D0. >, |D1. >
and |D2.> will be closed. So, the value of |D3. >= |1. >, |D0.> |D1. >, |D2.> = |0.> will 
be stored in cache memory and after NMR relaxation all of these will transform into 
DNA sequence as D3 = ACCTAG and D0, D1, D2 = TGGATC. For the outputs of 
F1 and F2, perform DNA OR operations among D0 to D3 and generate ACCTAG 
as the desired output. 

Table 3.1 Truth table of a quantum-DNA 4-to-2 ROM 

|B.> |A.> F1 F2 

|0.> |0.> ACCTAG ACCTAG 

|0.> |1.> ACCTAG ACCTAG 

|1.> |0.> ACCTAG ACCTAG 

|1.> |1.> ACCTAG ACCTAG



3.4 Quantum-DNA Programmable Read-Only Memory 73

3.4 Quantum-DNA Programmable Read-Only Memory 

As an alternative to traditional digital computing systems, quantum computing and 
DNA computing are gaining traction. In this chapter, unique theoretical approaches 
for creating alternative memory devices using a binary logic system are described 
using a combination of quantum and DNA computing. Quantum and DNA logic gates 
and decoders for quantum-DNA 4-to-2 read-only memory are among the memory 
devices designed. In terms of processing power and storage, both DNA and quantum 
computers have the potential to have a considerable impact on standard digital com-
puters. Because of its coherent superposition of states and biomedical technology, 
quantum computers are more powerful than regular Turing processors. Both of these 
properties might be captured by integrating DNA and quantum computing. Quantum 
biological computing explores the possibility of using biological systems or biolog-
ical materials to perform quantum computations, and it also includes the concept of 
quantum read-only memory (QROM). Quantum Programmable Read Only Memory 
(QPROM) in this context refers to memory devices where the content can be changed 
once after manufacture, a type of read-only memory (ROM). In summary, quantum 
biological computing is a broad field exploring the intersection of quantum physics, 
biology, and computer science. QPROM is a specific type of quantum memory that 
allows for loading data into quantum systems, while PROM is a classical memory that 
can be programmed once. This type of QPROM memory which is used in quantum 
biological computing systems, is called quantum-DNA PROM memory or quantum 
biocomputing PROM memory or quantum biological PROM memory. Therefore, 
the integrated computing system such as quantum-to-DNA PROM memory is the 
main concern of this section. 

3.4.1 Block Diagram 

Quantum-DNA 4-to-2 PROM block diagram with NMR relaxation in normal room 
temperature is shown in Fig. 3.5. So, input qubits |A. > and |B. > in quantum computing 
operations, store the qubits in cache memory and transform those qubits to DNA 
sequences to form outputs F1 and F2 in DNA computing operations. 

3.4.2 Design Procedure 

The design architecture of quantum-DNA 4-to-2 PROM with NMR relaxation in 
normal room temperature is shown in Fig. 3.6. To perform PROM in normal room 
temperature, a 2-to-4 decoder is needed and minterms of decoder output as the OR 
operations input to produce the desired PROM output function. In quantum-DNA 
computing (considering NMR relaxation), the input values are in qubit (quantum



74 3 Memory Devices in Quantum-DNA Computing

Fig. 3.5 Block diagram of quantum-DNA 4-to-2 PROM 

computing) and the output will be DNA sequence (DNA computing) at normal room 
temperature. 

Step 1: 
First, draw two input qubits |A. > and |B. >. Two possible qubits are |0. > false and |1. >
true. These two will produce four combinations of two input qubits. 
Step 2: 
To design a decoder, draw two quantum NOT operations and four quantum AND 
operations.



3.4 Quantum-DNA Programmable Read-Only Memory 75

Fig. 3.6 Circuit architecture of quantum–DNA 4-to-2 PROM



76 3 Memory Devices in Quantum-DNA Computing

Step 3: 
After getting qubits of all the corresponding values from four quantum AND oper-
ations of the 2-to-4 decoder, it needs to store all the quantum bits into a quantum 
cache memory. 
Step 4: 
After storing qubits of all the corresponding values from four quantum AND opera-
tions in cache memory, we need to perform NMR relaxation to transform the qubit 
to the DNA sequence. Here, NMR relaxation is done at room temperature, where 
there is no need to emit EMR. 
Step 5: 
Finally, after NMR relaxation, the DNA sequences will be found from qubits and 
these will go through two DNA OR gates to produce desired quantum-DNA 4-to-2 
PROM output sequences. 

3.4.3 Working Principle 

The truth table of a quantum-DNA 4-to-2 ROM is given in Table 3.2. The operational 
procedures of quantum-DNA 4-to-2 ROM are explained as follows: 
[i] For input combination A, B = |0. >, |0. >, |D0. > line will be open and |D1. > to |D3. >
will be closed. So, the value of |D0. >= |1. >, |D1.> to |D3.> = |0.> will be stored 
in cache memory and after NMR relaxation all of these will transform into DNA 
sequence as D0 = ACCTAG and D1 to D3= TGGATC. 
For the output F1 performs DNA OR operations between D0 and D2 that generate 
ACCTAG, and for F2 performs DNA OR operations between D1 and D3 that generate 
TGGATC as desired output. 
[ii] For input combination A, B = |1. >, |0. >, |D1.> line will be open and |D0. >, |D2. >
and |D3.> will be closed. So, the value of |D1. >=|1. >, |D0.> |D2. >, |D3.> = |0.> will 
store in cache memory and after NMR relaxation all of these will transform into 
DNA sequence as D1 = ACCTAG and D0, D2, D3 = TGGATC. 
For the output F1, the DNA OR operation will perform between D0 and D2 that 
produces TGGATC and for F2 performs DNA OR Operations between D1 and D3 
and generates ACCTAG. 

Table 3.2 Truth table of quantum-DNA 4-to-2 PROM 

|B.> |A.> F1 F2 

|0.> |0.> ACCTAG TGGATC 

|0.> |1.> TGGATC ACCTAG 

|1.> |0.> ACCTAG TGGATC 

|1.> |1.> TGGATC ACCTAG



3.5 Quantum-DNA Cache Memory 77

[iii] For input combination A, B = |0. >, |1. >, |D2. > line will be open and |D0. >, |D1. >
and |D3.> will be closed. So, the value of |D2. >= |1. >, |D0.> |D2. >, |D3.> = |0.> will 
be stored in cache memory and after NMR relaxation all of these will transform into 
DNA sequence as D2 = ACCTAG and D0, D1, D3= TGGATC. 
For the output F1 performs DNA OR operations between D0 and D2 that generate 
ACCTAG, and for F2 performs DNA OR operations between D1 and D3 that generate 
TGGATC as the desired output. 
[iv] For input combination A, B = |1. >, |1. >, |D3. > line will be open and |D0. >, |D1. >
and |D2.> will be closed. So, the value of |D3. >= |1. >, |D0.> |D1. >, |D2. >= |0.> will 
be stored in cache memory and after NMR relaxation all of these will transform into 
DNA sequence as D3 = ACCTAG and D0, D1, D2= TGGATC. 
For the output F1, the DNA OR operation will be performed between D0 and D2 that 
produces TGGATC and for F2, DNA OR operations will be performed between D1 
and D3 and generate ACCTAG. 

3.5 Quantum-DNA Cache Memory 

The design of various memory devices includes quantum and DNA logic gates and 
decoder for quantum-DNA 4-to-1 cache memory. Both DNA and quantum comput-
ers have the potential to significantly affect traditional digital computers in terms 
of processing power and depot. Quantum computers are more powerful than tradi-
tional Turing machines computing because of their coherent superposition of states 
and biotechnology techniques can be used to evolve DNA computers. Both of these 
properties might be captured by integrating DNA and quantum computing. In other 
way, quantum biological computing explores the potential of quantum mechanics in 
biological systems and the use of quantum information for biological applications. 
The concept of a “quantum cache memory (QCM)” in this context, as developed 
in research like the QCM framework, focuses on efficient and reliable storage and 
manipulation of genetic information within a quantum computing environment. This 
framework aims to preserve the integrity of DNA sequences during quantum pro-
cessing, allowing for tasks like SNP detection and pattern searching. In essence, the 
concept of a “quantum cache memory” in the context of quantum biological comput-
ing refers to a method for efficiently storing and manipulating genetic information 
using quantum states and algorithms, with the goal of enabling powerful biological 
analyses like SNP detection and pattern search. In quantum biological computing, 
this cache memory is called quantum-DNA cache memory or quantum biocomput-
ing cache memory or quantum biological computing cache memory. Therefore, the 
integrated computing systems such as the quantum-DNA systems for cache memory 
are the main concern of this section.



78 3 Memory Devices in Quantum-DNA Computing

3.5.1 Block Diagram 

Figure 3.7 represents the general organization of the quantum-DNA 4-to-1 cache 
memory block diagram, which consists of four separate “Words” of memory and 
each is single sequence wide. 

3.5.2 Circuit Architecture and Working Principle 

Circuit architecture of quantum-DNA cache memory is shown in Fig. 3.7. This figure 
represents the implementation of 4-to-1 quantum-DNA cache memory. This quantum 
RAM consists of four separate “Words” of memory and each is one qubit wide. 
The quantum RAM cell has three inputs and one output. A word consisting of two 
quantum RAM cells is arranged in such a way so that both qubits can be accessed 
simultaneously. Four words of memory need two address lines. |A.> and |B.> are 
the two-qubit address line inputs that go through a 2-to-4 decoder that selects one 
of the four words. The memory-enabled input enables the decoder. If the memory 
is enabled |0. >, all outputs of the decoder will be |0.> and in that case, none of the 

Fig. 3.7 Block diagram of quantum-DNA 4-to-1 cache memory



3.7 Summary 79

Table 3.3 Control input to memory chip 

|R/W.> Memory operation 

X None 

|0.> Write to the selected word 

|1.> Read from the selected word 

memory addresses will be selected. But when the memory enabled is |1. >, one of the 
four words is selected. The word is selected by the value in the two address lines. 

When a word has been selected, the read/write input determines the operation. 
During the read operation, the four qubits of the selected word pass to the DNA OR 
gates to the output Z1 terminals. But during the write operation, the data which is 
available in the input lines are transferred into the four quantum cells of the selected 
word. The quantum RAM cells that are not selected have become disabled and their 
previous qubit never changes. But when the memory-enabled input that passes into 
the decoder is equal to |0. >, none of the words are selected, and then all quantum 
cells remain unchanged regardless of the value of the read/write input. The control 
input to memory chip of quantum-DNA cache memory is given in Table 3.3. 

3.6 Applications 

It might be possible to capture the benefits of quantum computing and DNA com-
puting together after combining these two. The applications of memory devices 
in quantum computing are described separately in Chap. 2 and the applications of 
memory devices in DNA computing are also described separately in Chap. 4. So, both 
applications can be achieved in all memory devices in quantum-DNA computing. 

3.7 Summary 

This chapter has presented the details of memory devices in quantum-DNA comput-
ing. Necessary figures with their working principle have also been shown. Quantum-
DNA computing is a new era of modern technology where two exciting technologies 
are combined together. The book is introducing this technology for the first time. 
The upcoming future will be benefited with the new technology. In quantum-DNA 
circuit, the excessive heat is needed to be transferred to the DNA part where the extra 
heat is needed to perform calculations.



Chapter 4 
Memory Devices in DNA-Quantum 
Computing 

4.1 Introduction 

DNA-quantum computing is the opposite of quantum-DNA computing. Both are 
called quantum biocomputing. Both DNA and quantum computers have the potential 
to significantly affect traditional digital computers in terms of processing power and 
depot. Furthermore, nanotech DNA computing is highly parallel: In principle, billions 
upon trillions of DNA molecules might be undergoing chemical reactions or doing 
calculations, at the same time. In creating DNA-based approaches to simulate digital 
data manipulation, demonstrating how data may be digested using a circuit made up 
of DNA-based dynamic logic gates. Quantum computers are also much quicker than 
conventional supercomputers. A DNA-quantum computing system combines DNA 
with quantum computing. In DNA-quantum computing, this chapter will go through 
all of the intricacies of the same four memory devices. 

4.2 DNA-Quantum Random-Access Memory 

DNA-quantum computing for Random-Access Memory (RAM) is the main concern 
of this chapter. Biological quantum computing, in the context of Random Access 
Memory (RAM), refers to exploring biological systems for potential use in quantum 
memory, specifically for quantum random access memory (QRAM). This involves 
investigating how biological components could be engineered or manipulated to store 
and retrieve quantum information efficiently and reliably. QRAM is a key component 
of quantum computers, enabling them to access and process quantum data stored 
in a quantum format. Some researchers are investigating the possibility of using 
biological systems as quantum memory devices. These systems could be engineered 
to exhibit quantum phenomena and store quantum data in a stable and controllable 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9_4 

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5349-9_4&domain=pdf
https://doi.org/10.1007/978-981-97-5349-9_4
https://doi.org/10.1007/978-981-97-5349-9_4
https://doi.org/10.1007/978-981-97-5349-9_4
https://doi.org/10.1007/978-981-97-5349-9_4
https://doi.org/10.1007/978-981-97-5349-9_4
https://doi.org/10.1007/978-981-97-5349-9_4
https://doi.org/10.1007/978-981-97-5349-9_4
https://doi.org/10.1007/978-981-97-5349-9_4
https://doi.org/10.1007/978-981-97-5349-9_4
https://doi.org/10.1007/978-981-97-5349-9_4
https://doi.org/10.1007/978-981-97-5349-9_4


82 4 Memory Devices in DNA-Quantum Computing

manner. This type of memory is called biological quantum RAM memory or bio-
quantum RAM memory or DNA-quantum RAM memory. DNA-quantum RAM is 
a volatile memory. Quantum RAM is for quantum computer and DNA RAM is for 
DNA computer. So, to process data in DNA-quantum computing system, DNA-
quantum RAM is necessary where the first part would be DNA and the last part 
would be quantum as well. 

4.2.1 Block Diagram 

A quadrupole ion trap traps charged particles using dynamic electric fields. In honor 
of Wolfgang Paul, these are also known as radio-frequency (RF) traps or Paul traps. 
The process of catching and cooling ions using quadrupole ion traps has advanced 
dramatically during the last two decades. These trapping techniques allow researchers 
to confine charged particles of a single species to the trap center, allowing them to 
study these ions in a well-controlled environment. Because of the lengthy storage 
durations of the ions, it is feasible in these traps, the transit-time broadening is 
eliminated, allowing for precision spectroscopic observations of these ions. Several 
significant experiments with a single electron or ion have been carried out to address 
challenges in basic physics, including the determination of the electron radius, precise 
measurements of fundamental characteristics, and testing of quantum mechanics 
predictions. The block diagram of quantum-DNA 4-to-1 RAM is shown in Fig. 4.1. 

4.2.2 Working Principle and Circuit Architecture 

Figure 4.2 presents the implementation of 4-to-1 DNA-quantum RAM. This DNA-
quantum RAM consists of four separate “Words” of memory and each is one sequence 
wide. The DNA RAM cell has three inputs and one output. The complete circuit of a 
DNA RAM cell is described in Fig. 4.2 with proper explanation. A word consisting of 
two DNA RAM cells is arranged in such a way so that both sequences can be accessed 
simultaneously. Four words of memory need two address lines. A and B are the two-
sequence address lines inputs that go through a DNA 2-to-4 decoder that selects one 
of the four words. The memory-enabled input enables the decoder. If the memory 
enabled is TGGATC, all outputs of the decoder will be TGGATC and in that case, 
none of the memory addresses will be selected. But when the memory enabled is 
ACCTAG, one of the four words is selected. The word is selected by the value in the 
two address lines. When a word has been selected, the read/write input determines 
the operation. During the read operation, the four sequences of the selected word 
pass to the quantum OR operations to the output |Z1.> terminals. But during the 
write operation, the data which is available in the input lines are transferred into 
the four DNA cells of the selected word. The DNA RAM cells that are not selected



4.3 DNA-Quantum Read-Only Memory 83

become disabled and their previous sequence never changes. But when the memory-
enabled input that passes into the decoder is equal to TGGATC, none of the words 
are selected, and then all DNA cells remain unchanged regardless of the value of the 
read/write input. This is the working procedure of 4-to-1 DNA-quantum RAM. 

4.3 DNA-Quantum Read-Only Memory 

Both DNA and quantum computers have the potential to significantly affect tradi-
tional digital computers in terms of processing power and depot. Quantum comput-
ers are more powerful than traditional Turing machines computing because of their 
coherent superposition of states and biotechnology techniques can be used to evolve 
DNA computers. The general idea of quantum computing is that some quantum algo-
rithms are faster than those associated with time, and these systems make quantum 
computing one of the best technologies of the future. The DNA-quantum is the oppo-
site of quantum-DNA computing. In other way, In biological quantum computing, a 
“read-only memory” (ROM) would be a mechanism for storing and retrieving quan-
tum information, similar to a classical ROM, but using biological components and 
principles. While the concept of “biological ROM” is still speculative, it explores 

Fig. 4.1 Block diagram of quantum-DNA 4-to-1 RAM



84 4 Memory Devices in DNA-Quantum Computing

the possibility of using biological systems or biological materials to build quantum 
memories. If a biological quantum ROM could be developed, it could offer unique 
advantages, such as the potential for building quantum computers with biological 

Fig. 4.2 Circuit architecture of DNA-quantum 4-to-1 RAM



4.3 DNA-Quantum Read-Only Memory 85

materials and potentially harnessing biological processes for quantum computation. 
This section will describe about the details of DNA-quantum read-only memory. 

4.3.1 Design Procedure 

To perform ROM at normal room temperature, a 2-to-4 decoder and minterms of 
decoder output as the OR operations input are needed to produce the desired ROM 
output function. In the DNA-quantum computing (considering quadrupole ion trap), 
the input values are in DNA sequences (DNA computing) and the output will be 
qubits (quantum computing) at normal room temperature. Figure 4.3 shows the block 
diagram of DNA-quantum 4-to-2 ROM memory and the circuit architecture of DNA-
quantum 4-to-2 ROM with quadrupole ion trap in normal room temperature is shown 
in Fig. 4.4. The design procedure of DNA-quantum 4-to-2 ROM is explained as 
follows: 

Step 1 First, draw two input DNA sequences A and B. Two possible sequences are 
ACCTAG true and TGGATC false. These two will produce four combinations of 
two input sequences. 

Step 2 
To design a decoder, draw two DNA NOT operations and four DNA AND operations. 

Step 3 
After getting sequences of all the corresponding values from four DNA AND oper-
ations of 2-to-4 decoder, it needs to store all the DNA sequences into the cache 
memory. DNA cache memory is used for storing logical qubits and error correction. 
DNA cache also increases the logical qubit collection. 

Step 4 
After storing sequences of all the corresponding values from four DNA AND oper-
ations in cache memory, quadrupole ion trap is used to transform DNA sequences to 
qubits. 

Step 5 
Finally, the qubits from DNA sequences can be found and these will go through 
quantum OR operations to produce desired DNA-quantum 4-to-2 ROM output qubits. 

4.3.2 Working Principle 

The truth table of DNA-quantum 4-to-2 ROM is given in Table 4.1 and the working 
principle is explained as follows: 

[i] For input combination A, B = TGGATC, TGGATC, D0 line will be open and 
D1 to D3 will be closed. So, the value of D0 = ACCTAG, D1 to D3 =  TGGATC



86 4 Memory Devices in DNA-Quantum Computing

Fig. 4.3 DNA-quantum 4-to-2 ROM memory 

will be stored in DNA cache memory and after quadrupole ion trap all of these will 
be transformed into quantum qubits as |D0.< = |.1> and |D1. > to |D3. >= |.0>. For  the  
output qubits of |F1.> and |F2. >, it performs quantum OR operations among |D0. >
to |D3.> and generates |1.> as the desired output qubits. 

[ii] For input combination A, B = ACCTAG, TGGATC, D1 line will be open and D0, 
D2 and D3 will be closed. So, the value of D1= ACCTAG, D1,  D2, D3 =  TGGATC 
will be stored in DNA cache memory and after Quadrupole Ion Trap all of these will 
be transformed into quantum qubits as |D1.> = |1.> and |D0. >, |D2. >, |D3. >= |0. >. 
For the output qubits of |F1.> and |F2. >, it performs quantum OR operations among 
|D0.> to |D3.> and generates |1.> as the desired output qubits. 

[iii] For input combination A, B = TGGATC, ACCTAG, D2 line will be open and D0, 
D1 and D3 will be closed. So, the value of D2= ACCTAG, D0,  D1, D3 =  TGGATC 
will be stored in DNA cache memory and after quadrupole ion trap all of these will 

Table 4.1 Truth table of quantum-DNA 4-to-2 ROM 

B A |F1.> |F2. >

TGGATC TGGATC |1.> |1. >

TGGATC ACCTAG |1.> |1. >

ACCTAG TGGATC |1.> |1. >

ACCTAG ACCTAG |1.> |1.>



4.3 DNA-Quantum Read-Only Memory 87

Fig. 4.4 Circuit architecture of DNA-quantum 4-to-2 ROM



88 4 Memory Devices in DNA-Quantum Computing

be transformed into quantum qubits as |D2.> = |1.> and |D0. >, |D1. >, |D3. >= |0. >. 
For the output qubits of |F1.> and |F2. >, it performs quantum OR operations among 
|D0.> to |D3.> and generates |1.> as the desired output qubits. 

[iv] For input combination A, B = ACCTAG, ACCTAG, D3 line will be open and 
D0 to D2 will be closed. So, the value of D3= ACCTAG, D0,  D1, D2 =  TGGATC 
will be stored in DNA cache memory and after quadrupole ion trap all of these will 
be transformed into quantum qubits as |D3.> = |1.> and |D0. >, |D1. >, |D2. >= |0. >. 
For the output qubits of |F1.> and |F2. >, it performs quantum OR operations among 
|D0.> to |D3.> and generates |1.> as the desired output qubits. 

4.4 DNA-Quantum Programmable Read-Only Memory 

The chapter focuses on DNA-quantum programmable read-only memory. This 
chapter presents a novel theoretical strategy for creating alternative storage devices 
based on a binary logical system defined by a combination of all compensation, which 
includes DNA and quantum computing. When it comes to feeding and storing DNA 
or quantum computers, the capacity to make a significant influence on ordinary com-
puters is quite important. In other way, Biological quantum computing explores the 
idea of using or mimicking biological systems for quantum computation, potentially 
incorporating biological materials or processes to build or interface with quantum 
devices. Programmable read-only memory (PROM) is a type of memory where data 
can be written once and then read repeatedly, offering potential applications in quan-
tum systems. Biological quantum computing could leverage PROM-like mechanisms 
within biological systems, or use biological materials to create programmable quan-
tum memories. This type of memory is called the biological quantum ROM memory 
or bio-quantum ROM memory or DNA-quantum ROM memory. The greatest and 
most recent technology introduced in this chapter is the combination of these two. 

4.4.1 Design Procedure 

Block diagram of DNA-quantum 4-to-2 PROM is shown in Fig. 4.5 and the cir-
cuit architecture of DNA-quantum 4-to-2 PROM is depicted in Fig. 4.6. To perform 
PROM at normal room temperature, a 2-to-4 decoder and minterms of decoder out-
put as the OR operations input are needed to produce the desired PROM output 
function. In the DNA-quantum computing (considering Quadrupole Ion Trap), the 
input values are in DNA sequences (DNA computing) and the output will be qubits 
(quantum computing) at normal room temperature.



4.4 DNA-Quantum Programmable Read-Only Memory 89

Step 1 
First, draw two input DNA sequences A and B. Two possible sequences are ACCTAG 
true and TGGATC false. These two will produce four combinations of two input 
sequences. 

Step 2 
To design a decoder, draw two DNA NOT operations and four DNA AND operations. 

Step 3 
After getting sequences of all the corresponding values from four DNA AND oper-
ations of 2-to-4 decoder, it needs to store all the DNA sequences into the cache 
memory. 

Step 4 
After storing sequences of all the corresponding values from four DNA AND oper-
ations in cache memory, the quadruple ion trap helps to transform DNA sequences 
to qubits. 

Step 5 
Finally, qubits from DNA sequences are found and these will go through quantum 
OR operations to produce the desired DNA-quantum 4-to-2 PROM output qubits. 

4.4.2 Working Principle 

The truth table of quantum-DNA 4-to-2 PROM is given in Table 4.2 and the working 

Fig. 4.5 Block diagram of DNA-quantum 4-to-2 PROM



90 4 Memory Devices in DNA-Quantum Computing

Fig. 4.6 Circuit architecture of DNA-quantum 4-to-2 PROM



4.4 DNA-Quantum Programmable Read-Only Memory 91

principle is given as follows: 

[i] For input combination A, B = TGGATC, TGGATC, D0 line will be open and 
D1 to D3 will be closed. So, the value of D0= ACCTAG, D1 to D3 =  TGGATC 
will be stored in DNA cache memory and after quadrupole ion trap all of these will 
be transformed into quantum qubits as |D0.> = |1.> and |D1.> to |D3. >= |0. >. 
For the output of |F1. >, the quantum OR operation will be performed between |D0. >
and |D2. > that produces |1. > and for |F2. >, quantum OR operations will be performed 
between |D1.> and |D3.> and generates |0. >. 

[ii] For input combination A, B = ACCTAG, TGGATC, D1 line will be open and D0, 
D2 and D3 will be closed. So, the value of D1= ACCTAG, D1,  D2, D3 =  TGGATC 
will be stored in DNA cache memory and after quadrupole ion trap all of these will 
be transformed into quantum qubits as |D1.> = |1.> and |D0. >, |D2. >, |D3. >= |0. >. 
For the output of |F1. >, the quantum OR operation will be performed between |D0. >
and |D2. > that produces |0. > and for |F2. >, quantum OR operations will be performed 
between |D1.> and |D3.> and generates |1. >. 

[iii] For input combination A, B . = TGGATC, ACCTAG, D2 line will be open and 
D0, D1, and D3 will be closed. So, the value of D2= ACCTAG, D0,  D1, D3 =  
TGGATC will be stored in DNA cache memory and after quadrupole ion trap all 
of these will be transformed into quantum qubits as |D2.> = |1.> and |D0. >, |D1. >, 
|D3. >= |0. >. 
For the output of |F1. >, the quantum OR operation will be performed between |D0. >
and |D2. > that produces |1. > and for |F2. >, quantum OR operations will be performed 
between |D1.> and |D3.> and generates |0. >. 

[iv] For input combination A, B = ACCTAG, ACCTAG, D3 line will be open and 
D0 to D2 will be closed. So, the value of D3= ACCTAG, D0,  D1, D2 =  TGGATC 
will be stored in DNA cache memory and after quadrupole ion trap all of these will 
be transformed into quantum qubits as |D3.> = |1.> and |D0. >, |D1. >, |D2.> = |0. >. 
For the output of |F1. >, the quantum OR operation will be performed between |D0. >
and |D2. > that produces |0. > and for |F2. >, OR operations will be performed between 
|D1.> and |D3. >, generates |1. >. 

Table 4.2 Truth table of quantum-DNA 4-to-2 PROM 

B A |F1.> |F2. >

TGGATC TGGATC |1.> |0. >

TGGATC ACCTAG |0.> |1. >

ACCTAG TGGATC |1.> |0. >

ACCTAG ACCTAG |0.> |1.>



92 4 Memory Devices in DNA-Quantum Computing

4.5 DNA-Quantum Cache Memory 

The cache is a type of high-performance memory. It’s utilized for high-speed CPU 
acceleration and synchronization. Cache memory costs more than main memory or 
disk memory, although it is less expensive than CPU registers. Cache is a form of 
memory that works as a buffer between the RAM and the processor. The relevant data 
and instructions are frequently provided so that they are instantly available to the CPU 
when it is required. Caching is a technique for reducing the time it takes to retrieve 
critical memory data. The cache is a smaller and, faster memory that stores copies 
of data from memory regions that are often accessed. The CPU instructions and data 
store in a variety of independent caches. Bioquantum computing, a field exploring 
the integration of quantum computing with biological systems, leverages the inherent 
quantum properties of biological molecules to perform computations. This approach 
aims to harness the massive parallelism and information processing capabilities of 
biological systems while also benefiting from the power of quantum computing. 
Cache memory, in this context, would likely refer to a temporary storage area for 
frequently accessed data within a bioquantum computing system, potentially using 
biological materials or quantum states to store and retrieve information efficiently. 
To develop a stable and reliable quantum cache memory is a major challenge in 
quantum computing, and the same applies to bioquantum computing. Researchers 
are exploring different approaches to build quantum cache memory, including using 
biomolecules or quantum states. Further research is also needed to understand how 
to best utilize biological materials and quantum states for creating effective cache 
memory in bioquantum computing systems. The main concern of this chapter is to 
discuss about cache memory in DNA-quantum computing. 

4.5.1 Design Procedure 

Block diagram of Quantum-DNA 4-to-1 cache memory is shown in Fig. 4.7. Each 
of the four “Words” of memory in this DNA-quantum RAM is one sequence wide. 
There are three inputs and one output on the DNA RAM cell. A word is made up of 
two DNA RAM cells that are organized so that both sequences may be accessible at 
the same time. Two address lines are required for four words of memory. The two-
sequence address lines A and B are sent to a DNA 2-to-4 decoder, which picks one 
of the four words. The decoder is activated by the memory-enabled input. During 
the read operation, the four sequences of the chosen word are sent to the output 
|Z1.> terminals through quantum OR operations.



4.5 DNA-Quantum Cache Memory 93

Fig. 4.7 Block diagram of Quantum-DNA 4-to-1 Cache memory 

4.5.2 Working Principle 

Figure 4.8 shows the implementation of 4-to-1 DNA-quantum cache memory. DNA-
quantum RAM consists of four separate “Words” of memory and each is one sequence 
wide. The DNA RAM cell has three inputs and one output. A word consisting of two 
DNA RAM cells is arranged in such a way so that both sequences can be accessed 
simultaneously. Four words of memory need two address lines. A and B are the two-
sequence address line inputs that go through a DNA 2-to-4 decoder that selects one 
of the four words. The memory-enabled input activates the decoder. If the memory 
enabled is TGGATC, all outputs of the decoder will be TGGATC and in that case, 
none of the memory addresses will be selected. But when the memory enabled is 
ACCTAG, one of the four words is selected. The word is selected by the value in the 
two address lines. When a word has been selected, the read/write input determines 
the operation. During the read operation, the four sequences of the selected word 
pass to the quantum OR operations to the output |Z1.> terminals. But during the 
write operation, the data which is available in the input lines are transferred into the 
four DNA cells of the selected word. The DNA RAM cells that are not selected have 
become disabled and their previous sequence never changes. But when the memory-
enabled input that passes into the decoder is equal to TGGATC, none of the words 
are selected, and then all DNA cells remain unchanged regardless of the value of the 
read/write input.



94 4 Memory Devices in DNA-Quantum Computing

Fig. 4.8 DNA-quantum 4-to-1 cache memory



4.6 Summary 95

4.6 Summary 

The specifics of DNA-quantum memory devices were provided in this chapter. The 
initial component of the circuit was always DNA, and the latter part was always 
quantum. In DNA-quantum computing, the inputs are always DNA sequences and 
the outputs are qubits, which is the polar opposite of quantum-DNA computing. All 
of the memory devices are illustrated with diagrams, and their working principles and 
explanations are also provided. In DNA-quantum computing, DNA cache memory 
is needed and the extra heat is needed to supply to the DNA part. The quantum part 
produces excessive heat which is needed to be transferred to the cooler to maintain 
the temperature of the circuit.



Part II 
Programmable Devices in Quantum 

Biocomputing 

Overview 

Programmable Logic Devices (PLD) are a generic term for an integrated circuit that 
can be programmed in a laboratory to perform complex functions. A PLD consists 
of arrays of AND and OR gates. A system designer implements a logic design with 
a device programmer that blows fuses on the PLD to control gate operation. A 
programmable logic array (PLA) has a programmable-AND gate array, which links 
to a programmable OR gate array, which can then be conditionally complemented 
to produce an output. PLA is similar to ROM concept. However, a PLA does not 
provide full decoding of a variable and does not generate all the minterms as in 
a ROM. Programmable Array Logic (PAL) devices have arrays of transistor cells 
arranged in a “fixed-OR, programmable-AND” plane which are used to implement 
“sum-of-products” quantum logic equations for each of the outputs in terms of the 
inputs and either synchronous or asynchronous feedback from the outputs. System 
designers can use development software that converts basic code into instructions 
and a device programmer which needs to implement a design. FPGAs contain an 
array of programmable logic blocks, and a hierarchy of reconfigurable interconnects 
allowing blocks to be wired together. Logic blocks can be configured to perform 
complex combinational functions, or act as simple logic gates like AND and XOR. 
In most FPGAs, logic blocks also include memory elements, which may be simple 
flip-flops or more complete blocks of memory. Many FPGAs can be reprogrammed 
to implement different logic functions, allowing flexible reconfigurable computing 
as performed in computer software. A complex programmable logic device (CPLD) 
is a programmable logic device with complexity between that of PALs and FPGAs, 
and architectural features of both. In this part, these four programmable logic devices, 
namely, Programmable Logic Array (PLA), Programmable Array Logic (PAL), 
Field Programmable Gate Arrays (FPGA), Complex Programmable Logic Devices 
(CPLD) will be implemented in quantum biocomputing. Programmable logic devices



98 Part II: Programmable Devices in Quantum Biocomputing

(PLDs) play a crucial role in quantum biocomputing, enabling the design and imple-
mentation of complex biological circuits using DNA and other biomolecules. PLDs 
like FPGAs and CPLDs can be configured to perform specific logic operations, 
which are then utilized in biomolecular systems. This allows for the development of 
sensitive and customizable circuits that mimic biological processes and can be used 
for various applications, including sensing and treatment of diseases. These hybrid 
systems leverage both quantum mechanics and biomolecules to create more sophis-
ticated circuits. DNA sequences can be used as inputs to quantum-based PLDs, and 
the system’s behavior can be modulated by quantum effects.



Chapter 5 
Programmable Devices in Quantum 
Computing 

5.1 Introduction 

In quantum computing it usually uses an object’s quantum state to generate a qubit. 
These are the undefined qualities of an item before they have been identified, such 
as an electron’s spin or a photon’s polarization. Unmeasured quantum states exist in 
a mixed “superposition,” similar to a coin spinning in the air before landing. 

These superpositions can get entangled with those of other things, implying that 
their eventual outcomes will be mathematically connected. The complicated mathe-
matics underpinning these unsettled states of entangled “spinning coins” may be fed 
into specific algorithms to quickly solve issues that would take a traditional com-
puter a long time to solve, if it could even solve them at all. Solving complicated 
mathematical problems, creating difficult-to-crack security codes, and forecasting 
numerous particle interactions in chemical processes might be benefited from such 
algorithms. 

A programmable logic device (PLD) is an electronic component used to build 
reconfigurable device which is constructed using discrete logic gates with fixed func-
tions, where a PLD has an undefined function at the time of manufacture. Before 
the PLD can be used in a circuit, it must be programmed to implement the desired 
function. Compared to fixed logic devices, programmable logic devices simplify the 
design of complex logic and may offer superior performance. Unlike microproces-
sors, programming a PLD changes the connections made between the gates in the 
device. In other way, Programmable Logic Devices (PLDs), like CPLDs and FPGAs, 
are not directly used to perform quantum computations in the same way as they are 
used for classical computing. However, they play a crucial role in controlling and 
managing the hardware involved in quantum systems. Specifically, they can be used 
to implement the logic for controlling quantum gates, measurements, and other oper-
ations. In essence, PLDs are like the “brains” behind the control and execution of 
quantum hardware. They translate the instructions from a classical computer into the 
signals needed to manipulate and measure quantum systems. The quantum logic used 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9_5 

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5349-9_5&domain=pdf
https://doi.org/10.1007/978-981-97-5349-9_5
https://doi.org/10.1007/978-981-97-5349-9_5
https://doi.org/10.1007/978-981-97-5349-9_5
https://doi.org/10.1007/978-981-97-5349-9_5
https://doi.org/10.1007/978-981-97-5349-9_5
https://doi.org/10.1007/978-981-97-5349-9_5
https://doi.org/10.1007/978-981-97-5349-9_5
https://doi.org/10.1007/978-981-97-5349-9_5
https://doi.org/10.1007/978-981-97-5349-9_5
https://doi.org/10.1007/978-981-97-5349-9_5
https://doi.org/10.1007/978-981-97-5349-9_5


100 5 Programmable Devices in Quantum Computing

to design PLD devices makes the device more powerful which is the main concern 
of this chapter. 

5.2 Quantum Programmable Logic Array 

The programmable logic array is a type of Programmble Logic Device (PLD), which 
has both programmable quantum AND array and programmable quantum OR array. 
In a combinational circuit, because of don’t care conditions, not all the minterms are 
used. Programmable Logic Array (PLA) is a fixed architecture logic device with pro-
grammable quantum AND gates followed by programmable quantum OR gates. PLA 
is basically a type of programmable logic device used to build a reconfigurable dig-
ital circuit. PLDs have an undefined function at the time of manufacturing, but they 
are programmed before being made into use. PLA is a combination of memory and 
other logic circuits. PLAs can also be implemented using Quantum Dot Cellular 
Automata (QCA) technology, offering potential advantages in quantum computing 
and nanotechnology. 

5.2.1 Block Diagram 

Quantum PLA is a programmable logic device that has both programmable quantum 
AND array and programmable quantum OR array. Hence, it is the most flexible PLD. 
The block diagram of quantum PLA is shown in Fig. 5.1. Here, the inputs of quantum 
AND operations are programmable. That means each quantum AND operation has 
both normal and complemented inputs of variables. So, based on the requirement, any 
of those inputs can be programmed. So, the required product terms can be generated 
by using these quantum AND operations. 

Here, the inputs of quantum OR operations are also programmable. So, it can 
be possible to program any number of required product terms, since all the outputs 
of quantum AND operations are applied as inputs to each quantum OR operation. 
Therefore, the outputs of quantum PLA will be in the form of the sum of product 
forms. 

5.2.2 Circuit Architecture 

The circuit diagram of PLA for functions F1, F2, and F3 is shown in Fig. 5.2 and 
the truth table of quantum PLA for functions F1, F2, and F3 is given in Table 5.1. 
In Fig. 5.2, a number of AND gates and a number of OR gates are used to get the 
function values.



5.2 Quantum Programmable Logic Array 101

Table 5.1 Truth table of quantum PLA for functions F1, F2, and F3 

.|A > .|B > .|C > .|F1 > .|F2 > . |F3 >

.|0 > .|0 > .|0 > .|0 > .|1 > . |0 >

.|0 > .|0 > .|1 > .|1 > .|0 > . |0 >

.|0 > .|1 > .|0 > .|0 > .|1 > . |1 >

.|0 > .|1 > .|1 > .|1 > .|0 > . |1 >

.|1 > .|0 > .|0 > .|0 > .|1 > . |1 >

.|1 > .|0 > .|1 > .|0 > .|1 > . |1 >

.|1 > .|1 > .|0 > .|1 > .|0 > . |0 >

.|1 > .|1 > .|1 > .|1 > .|0 > . |0 >

F1 (A, B, C) = m (1, 3, 6, 7) 
F2 (A, B, C) = m (0, 2, 4, 5) 
F3 (A, B, C) = m (2, 3, 4, 5) 

K-map to reduce the function: 

A. \BC .|0 > |0 > .|0 > |1 > .|1 > |1 > . |1 > |0 >

.|0 > .|0 > .|1 > .|1 > . |0 >

.|1 > .|0 > .|0 > .|1 > . |1 >

. |F1 >= |A > .|B > +|A′ > .|C >

A. \BC .|0 > |0 > .|0 > |1 > .|1 > |1 > . |1 > |0 >

.|0 > .|1 > .|0 > .|0 > . |1 >

.|1 > .|1 > .|1 > .|0 > . |0 >

. |F2 >= |A′ > .|C′ > +|A > .|B′ >

Fig. 5.1 Block diagram of quantum PLA



102 5 Programmable Devices in Quantum Computing

A. \BC .|0 > |0 > .|0 > |1 > .|1 > |1 > . |1 > |0 >

.|0 > .|0 > .|0 > .|1 > . |1 >

.|1 > .|1 > .|1 > .|0 > . |0 >

. |F3 >= |A′ > .|B > +|A > .|B′ >

Consider the implementation of the following quantum logic functions using 
Quantum PLA: 

. 

|F1 > = |A > .|B > + |A′ > .|C >

|F2 > = |A′ > .|C′ > + |A > .|B′ >
|F3 > = |A′ > .|B > + |A > .|B′ >

The given three functions are in sum of product forms. The number of product terms 
present in the given quantum logic functions .|F1 >, .|F2 >, and .|F3 > are two. 

.|A >. .|B′ > product are use in both functions .|F2 > and .|F3 >. So, five pro-
grammable quantum AND gates and three programmable quantum OR gates are 
required for producing those three functions. The corresponding quantum PLA is 
shown in Fig. 5.3. 

Consider the realization of the quantum logic expression .|F1 >= |A >. . |B >

+|A′ > . .|C >, .|F2 >= |A′ >. .|C′ > +|A >. .|B′ >, and .|F3 >= |A′ >. . |B >

+|A >. .|B′ > using quantum programmable logic array. 

Fig. 5.2 Circuit diagram of PLA for functions F1, F2, and F3



5.2 Quantum Programmable Logic Array 103

Fig. 5.3 Circuit architecture of quantum PLA 

For the given problem, there are three inputs (.|A >,.|B >,.|C >) and three outputs 
(.|F1 >,.|F2 >,.|F3 >). The complement of three inputs is obtained through quantum 
NOT operation. Thus the realization has six input lines (input with its complement). 

The given expression has five product terms and so the fuses are placed in the 
corresponding literals to obtain the product terms.



104 5 Programmable Devices in Quantum Computing

5.2.3 Working Principle 

According to truth table (Table 5.1) of Quantum PLA, it is necessary to do the 
following operations to get the desired output qubits: 

1. For input qubits .|A >, .|B >, .|C >= |0 >, .|0 >, .|0 > function .|F2 > produces 
.|1 >. 

2. For input qubits .|A >, .|B >, .|C >= |0 >, .|0 >, .|1 > function .|F1 > produces 
.|1 >. 

3. For input qubits .|A >, .|B >, .|C >= |0 >, .|1 >, .|0 > functions.|F2 > and. |F3 >

produce .|1 >. 
4. For input qubits .|A >, .|B >, .|C >= |0 >, .|1 >, .|1 > functions.|F1 > and. |F3 >

produce .|1 >. 
5. For input qubits .|A >, .|B >, .|C >= |1 >, .|0 >, .|0 > functions.|F2 > and. |F3 >

produce .|1 >. 
6. For input qubits .|A >, .|B >, .|C >= |1 >, .|0 >, .|1 > functions.|F2 > and. |F3 >

produce .|1 >. 
7. For input qubits .|A >, .|B >, .|C >= |1 >, .|1 >, .|0 > function .|F1 > produces 

.|1 >. 
8. For input qubits .|A >, .|B >, .|C >= |1 >, .|1 >, .|1 > function .|F1 > produces 

.|1 >. 

5.2.4 Applications 

PLA is used for the implementation of various combinational circuits using quantum 
AND operation and quantum OR operation. In quantum PLA, all the minterms are 
not realized but only required minterms are implemented. As quantum PLA has 
a programmable quantum AND operation array and programmable quantum OR 
operation array, it provides more flexibility but the disadvantage is that, it is not easy 
to use. 

Applications of a quantum PLA are as follows: 

1. It is used to provide control over datapath. 
2. It also is used as a counter. 
3. This device may use as a decoder. 
4. In many cases, it is used as a BUS interface in programmed I/O. 

5.3 Quantum Programmable Array Logic 

A Quantum Programmable Array Logic (QPAL) is a logic device, which has a pro-
grammable quantum AND array and fixed quantum OR array. It is used to realize a



5.3 Quantum Programmable Array Logic 105

Fig. 5.4 Programmable array logic 

logic function. In this QPAL, only quantum AND gates are programmable and hence 
it is easier to work with QPAL. In other way, a quantum PAL or QPAL refers to the 
concept of building quantum computers with logic arrays that can be programmed 
to perform different quantum operations. These arrays are similar to classical pro-
grammable logic devices but utilize quantum mechanics for computation. In essence, 
quantum programmable array logic aims to harness the power of quantum mechanics 
for computation by using programmable quantum gate arrays, paving the way for 
more versatile and powerful quantum computers. The goal of quantum PALs is to 
create a quantum processor where the logic array can be reconfigured to implement 
different quantum algorithms or circuits. 

Figure 5.4 shows the internal structure of programmable array logic. The product 
terms can be programmed through the fuse link. It means the user can decide the 
connection between the inputs and the AND gates. If a particular input line is to be 
connected to the AND gate, then the fuse link must be placed at the interconnection. 
The AND gate outputs are then fed as an input to the fixed-OR gate. Depending 
upon the required function, the output line of the AND gate is connected to the 
corresponding input of the OR gate. 

5.3.1 Block Diagram 

Quantum Programmable Array Logic (PAL) is a form of Programmable Logic Device 
(PLD) that may be used to implement a certain logical function. A quantum AND 
gate array is followed by a quantum OR gate array in quantum PALs. It should be 
emphasized, however, that only the quantum AND gate array is programmable here,



106 5 Programmable Devices in Quantum Computing

Fig. 5.5 Block diagram of a quantum PAL 

as opposed to the quantum OR gate array, which has fixed logic. This is due to the 
fact that the inputs to the quantum AND gates are routed through fuses that operate 
as programmable connections. Quantum PALs have less programming flexibility 
than programmable logic arrays because of their programmable-AND and fixed-OR 
architectures (PLAs). However, due to the same reason PALs are less expensive than 
PLAs. Hence, it is the most flexible quantum PLD. The block diagram of quantum 
PAL is shown in Fig. 5.5. 

Here, the inputs of quantum AND operations are programmable. That means each 
quantum AND operation has both normal and complemented inputs of variables. 

5.3.2 Circuit Architecture 

Consider the PAL for the following functions: 

F1 (A, B, C) = m (3, 5, 6, 7) 
F2 (A, B, C) = m (0, 2, 4, 5). 

Circuit architecture for the corresponding functions (F1, F2) is shown in Fig. 5.6 and 
the truth table is given in Table 5.2. 

A K-map to reduce the function: 

A. \BC .|0 > |0 > .|0 > |1 > .|1 > |1 > . |1 > |0 >

.|0 > .|0 > .|0 > .|1 > . |0 >

.|1 > .|0 > .|1 > .|1 > . |1 >

.|F1 >= |A > .|B > +|B > .|C > +|A > .|C >



5.3 Quantum Programmable Array Logic 107

Table 5.2 Truth table of a quantum PAL for functions F1 and F2 

.|A > .|B > .|C > .|F1 > . |F2 >

.|0 > .|0 > .|0 > .|0 > . |1 >

.|0 > .|0 > .|1 > .|0 > . |0 >

.|0 > .|1 > .|0 > .|0 > . |1 >

.|0 > .|1 > .|1 > .|1 > . |0 >

.|1 > .|0 > .|0 > .|0 > . |1 >

.|1 > .|0 > .|1 > .|1 > . |1 >

.|1 > .|1 > .|0 > .|1 > . |0 >

.|1 > .|1 > .|1 > .|1 > . |0 >

Fig. 5.6 PAL for functions F1 and F2 

A. \BC .|0 > |0 > .|0 > |1 > .|1 > |1 > . |1 > |0 >

.|0 > .|1 > .|0 > .|0 > . |1 >

.|1 > .|1 > .|1 > .|0 > . |0 >

.|F2 >= |A′ > .|C′ > +|A > .|B′ >



108 5 Programmable Devices in Quantum Computing

Consider the following quantum logic functions using a quantum PAL: 

. 
|F1 >= |A > .|B > +|B > .|C > +|A > .|C >

|F2 >= |A′ > .|C′ > +|A > .|B′ >

The given two functions are in sum-of-products form. The number of product 
terms present in the given quantum logic functions .|F1 >, .|F2 > are three and two, 
respectively. 

Six programmable quantum AND operations and two fixed quantum OR opera-
tions are required for producing those two functions. But, it is required to perform 
an extra two quantum OR operations as three product terms for each function are 
required to do OR operation. The corresponding quantum PAL is shown in Fig. 5.7. 

Consider the realization of the quantum logic expression . |F1 >= |A > .|B >

+|B > .|C > +|A > .|C >; |F2 >= |A′ > .|C′ > +|A > .|B′ > using quantum 
programmable logic array. 

For the given problem, there are three inputs (.|A >, .|B >, .|C >) and two outputs 
(.|F1 > and .|F2 >). The complement of three inputs is obtained through quantum 
NOT operation. Thus, the realization has six input lines (input with its complement). 

The given first expression has three product terms and the second expression 
has two product terms. But as the OR operation is fixed the fuses are placed in the 
corresponding literals to obtain the product terms. 

5.3.3 Working Principle 

According to truth table as shown in Table 5.2 of quantum PAL, it is necessary to do 
the following operations to perform the desired output qubits: 

1. For input qubits .|A >, .|B >, .|C >= |0 >, .|0 >, .|0 > function .|F2 > produces 
.|1 >. 

2. For input qubits .|A >, .|B >, .|C >= |0 >, .|0 >, .|1 > function .|F1 > produces 
.|1 >. 

3. For input qubits .|A >, .|B >, .|C >= |0 >, .|1 >, .|0 > function .|F2 > produces 
.|1 >. 

4. For input qubits .|A >, .|B >, .|C >= |0 >, .|1 >, .|1 > function .|F1 > produces 
.|1 >. 

5. For input qubits .|A >, .|B >, .|C >= |1 >, .|0 >, .|0 > function .|F2 > produces 
.|1 >. 

6. For input qubits .|A >, .|B >, .|C >= |1 >, .|0 >, .|1 > functions.|F1 > and. |F2 >

produce .|1 >. 
7. For input qubits .|A >, .|B >, .|C >= |1 >, .|1 >, .|0 > function .|F1 > produces 

.|1 >. 
8. For input qubits .|A >, .|B >, .|C >= |1 >, .|1 >, .|1 > function .|F1 > produces 

.|1 >.



5.3 Quantum Programmable Array Logic 109

Fig. 5.7 Circuit architecture of quantum PAL 

5.3.4 Advantages 

The PLA is more flexible than a PAL. PLA is costlier as compared to the PAL. A 
number of functions provided by PLA are more relatively useful because it enables 
the programming of the OR plane also. PAL works faster while PLA is slower 
comparatively. Besides these, the PAL has the following benefits:



110 5 Programmable Devices in Quantum Computing

1. Highly efficient. 
2. Low production cost as compared to PLA. 
3. Highly secure. 
4. High reliability. 
5. Low power is required for working. 
6. More flexible to design. 

5.4 Quantum Field Programmable Gate Arrays 

A Field Programmable Gate Array (FPGA) is a Programmable Logic Device (PLD). 
It is a digital integrated circuit that contains configurable logic blocks along with pro-
grammable interconnection between these blocks. It can be configured by end-users 
to implement specific applications. Programmable interconnections are to be had 
for customers or designers to carry out given functions without difficulty. A typical 
model FPGA chip is shown in Fig. 5.8. There are I/O blocks, which are designed 
and numbered consistent with function. There are CLBs (configurable logic blocks) 
for implementing different functions. In other way, FPGAs are playing an increas-
ingly important role in the development and acceleration of quantum computing, 
primarily through their ability to simulate and emulate quantum circuits. While not a 
direct quantum processor, FPGAs offer a programmable hardware platform that can 
be adapted to execute specific quantum algorithms or simulate aspects of quantum 
behavior. This flexibility allows researchers to quickly prototype and test quantum 
algorithms before committing to specialized quantum hardware. As quantum com-
puting technology matures, FPGAs are likely to play an even more important role in 
quantum hardware development and testing. Researchers are exploring new FPGA 
architectures and programming techniques to further optimize their performance for 
quantum computing applications. The development of specialized quantum-aware 
FPGAs is also a promising area of research, potentially leading to more efficient and 
powerful quantum computing systems. 

5.4.1 Block Diagram 

A basic FPGA architecture consists of thousands of fundamental elements called 
configurable logic blocks (CLBs) surrounded by a system of programmable inter-
connects, called a fabric that routes signals between CLBs. FPGA configurable logic 
block is shown in Fig. 5.9. 

On an FPGA, a customizable logic block (CLB) is the most basic repeating logic 
block. Hundreds of such logic blocks are accessible on the FPGA, all of which are 
coupled by routing resources. These logic blocks are used to build sequential and 
combinational logic. 

There are three essential CLB components:



5.4 Quantum Field Programmable Gate Arrays 111

Fig. 5.8 FPGA circuit diagram 

Fig. 5.9 FPGA configurable logic block 

1. Flip-flops. 
2. Look-up tables (LUTs). 
3. Multiplexers.



112 5 Programmable Devices in Quantum Computing

Fig. 5.10 Quantum D flip-flop 

5.4.2 Design Architecture of Basic Components 

Flip-Flop: The most important component of the timed flip-flops is the D flip-flop. 
The S and R inputs become complements of each other when an inverter (NOT gate) 
is added between the Set and Reset inputs, guaranteeing that the two inputs S and 
R are never equal (0 or 1) at the same time, allowing us to control the toggling 
action of the flip-flop with only one D (Data) input. Then this Data input is labeled 
“D” and is used in place of the “Set” signal, and the inverter is used to generate the 
complementary “Reset” input thereby making a level-sensitive D-type flip-flop from 
a level-sensitive SR-latch. Quantum D flip-flop is shown in Fig. 5.10. 

Look-up Table (LUT): The core of the FPGA is an LUT. It contains all of the 
design’s logically possible outputs. The digital designer programs the LUT to solve 
a quantum logic equation. The look-up table must be able to store all conceivable 
combinations of quantum logic expressions. The structure of an LUT is depicted in 
Fig. 5.11. 

Quantum Multiplexer: A multiplexer (MUX) is a device that can accept multiple 
input signals and synthesize a single output signal for each input signal in a recover-
able way. It’s also an integrated system with a set of data inputs and a single output. 
Figure 5.12 depicts a quantum 2-to-1 MUX.



5.4 Quantum Field Programmable Gate Arrays 113

Fig. 5.11 Two inputs look-up table 

5.4.3 Circuit Architecture 

FPGA logic block is designed by connecting flip-flops, look-up tables (LUT), and 
multiplexers. Here a simple quantum FPGA logic block is designed by using a D 
flip-flop, a look-up table (LUT), and a multiplexer. A simple two-input LUT con-
sists of one quantum AND, one quantum NOT, and one quantum OR operation. The 
output of the LUT will go through the D flip-flop and multiplexer as input. The D flip-
flop is a sequential circuit that consists of four quantum NAND operations and one 
quantum NOT operation. The output of the quantum D flip-flop will go through the 
multiplexer as input. A quantum 2-to-1 MUX is designed using two quantum AND 
operations, one quantum NOT operation, and one quantum OR operation. The mul-
tiplexer generates the desired output for the FPGA logic block. Circuit architecture 
of quantum FPGA is shown in Fig. 5.13. 

5.4.4 Working Principle 

Two inputs .|A0 > and .|A1 > firstly go through the look-up tables (LUT). In LUT, 
then .|A0 > will go through quantum NOT operation. .|A0 > and .|A1 > will go



114 5 Programmable Devices in Quantum Computing

Fig. 5.12 Quantum 2-to-1 MUX 

through quantum AND operation. Finally, the outputs of the quantum NOT and 
AND operations will go through the quantum OR operation and produce the LUT 
output. 

Two inputs, one is the output of LUT and another is clock input, will go through 
the D flip-flop. The D flip-flop uses one quantum NOT operation and four quan-
tum NAND operations. The D flip-flop transfers the LUT output, if the CLK input 
sequence is .|1 >. If the CLK input is .|0 >, one of the inputs to each of the last two 
quantum NAND operations will be .|1 >, thus the output of the D flip-flop remains 
unchanged regardless of the values of the LUT output. 

Two quantum AND operations, one quantum NOT operation, and one quantum 
OR operation are used in 2-to-1 MUX. S. 0’ (complement of S. 0) is created by applying 
the quantum NOT operation for input S. 0. The NOT gate and LUT output will go 
through as inputs for the first quantum AND operation. S. 0 and D flip-flop (DFF) 
output will go through as inputs for the second quantum AND operation. The output 
of these two quantum AND operations will go through the quantum OR operation 
to generate the FPGA logical block output.



5.4 Quantum Field Programmable Gate Arrays 115

Fig. 5.13 Circuit architecture of quantum FPGA 

5.4.5 Applications 

A quantum FPGA (QFPGA) architecture is presented by combining the advantages 
of the measurement-based quantum computation. QFPGA consists of quantum logic 
blocks (QLBs). The QLB is used to realize a small quantum logic while the QRC is 
to combine them properly for larger logic realization. There are two types of buses 
in QFPGA, the local bus in the CLB. QFPGA: There are a two main different types 
of buses which are as follows: 

1. Register reads and writes; and 
2. Data transfer or streaming 

The register reads and writes is normally for reading or writing a register, often 
32 bits. This is normally includes a clock, a ready signal, and a read or write bit.



116 5 Programmable Devices in Quantum Computing

The data transfer often has a data valid signal when the data bus is valid, and there 
is feedback if the receiver is not ready for more data. 

5.5 Quantum Complex Programmable Devices 

The CPLD stands for “Complex programmable logic devices,” and it is a type of 
integrated circuit used by application designers to construct digital hardware such 
as mobile phones. These can handle more design complexity than SPLDs (sim-
ple programmable logic devices), but they have simpler logic than FPGAs (field-
programmable gate arrays). CPLDs have a large number of logic blocks, each with 
8–16 macrocells. All of the macrocells in a logic block are fully linked because each 
logic block performs a specific function. These blocks may or may not be linked to 
one another, depending on the application. Figure 5.14 shows the block diagram of 
connected logic block PLDs. 

Most CPLDs (complex programmable logic devices) have macrocells with a sum 
of logic functions, a D FF (D flip-flop), and a MUX. Depending on the chip, the 
combinatorial logic function supports from 4 to 16 product terms with inclusive 
fan-in. CPLDs also differ in terms of shift registers and logic gates. Due to this 
reason, CPLDs with a huge number of logic gates may be used instead of FPGAs. 
Another CPLD specification signifies the number of product terms that a macrocell 

Fig. 5.14 Block diagram of connected logic block PLDs



5.5 Quantum Complex Programmable Devices 117

can accomplish. Product terms are the product of digital signals that execute a specific 
logic function. CPLDs are available in several IC package forms and logic families. 
CPLDs also differ in terms of supply voltage, operating current, standby current, and 
power dissipation. CPLDs are not directly used in quantum computing hardware, 
but they are crucial for controlling and interacting with quantum hardware at various 
stages. While not the core quantum processing unit, CPLDs help manage qubits, 
implement control circuits, and interface with other parts of the system. In essence, 
CPLDs play a supporting role in quantum computing, enabling the precise control and 
interaction with quantum hardware, which is crucial for realizing the full potential 
of quantum algorithms and experiments. 

In terms of complexity, CPLD (complex programmable logic device) lies in 
between SPLD (simple programmable logic device) and FPGA, and thus inherits 
features from both these devices. CPLDs are more complex than SPLDs but less 
complex than FPGAs. 

5.5.1 Block Diagram 

A set of programmable functional blocks (FBs) constructs a sophisticated pro-
grammable logic device. Macrocells containing a sum of logic functions, a D FF 
(D flip-flop), and a MUX which are found in most CPLDs (complex programmable 
logic devices). Quantum CPLD configurable logic block is shown in Fig. 5.15. Logic 
block of PLD (Programmable Logic Device) is shown in Fig. 5.16. 

On a CPLD, a functional block (FB) is the most basic repeating logic block. 
The linkages between the function blocks are programmable. The programmable FB 
resembles a logic gate array, with an array of AND gates that can be programmed 
and OR gates that are stable. Interconnections between function blocks are made 
using a switch matrix. Furthermore, a CPLD’s switch matrix may or may not be 
entirely linked. A normal PAL (Programmable Array Logic) device has a few hun-
dred logic gates of complexity, but a CPLD has tens of thousands of logic gates of 
complexity. The CPLDs have predictable timing characteristics and hence are suit-
able for critical control applications and other applications where a high-performance 
level is required. Further, due to low power consumption and low cost, CPLDs are 
mostly used for battery-operated portable applications such as mobile phones, digital 
assistants, etc. The functional block is shown in Fig. 5.17.



118 5 Programmable Devices in Quantum Computing

Fig. 5.15 Quantum CPLD configurable logic block 

There are three essential components of FBs which are as follows: 

1. Quantum flip-flops. 
2. Quantum logic function. 
3. Quantum multiplexers. 

5.5.2 Circuit Architecture 

CPLD logic block is designed by connecting flip-flops, PAL (logic function), and 
multiplexers. Here a simple quantum CPLD logic block is designed by using a D flip-
flop, logic function, and a multiplexer. A simple logic function consists of a quantum 
AND and one quantum OR operation. The output of the logic function will be XOR 
with zero. The output of the XOR will go through the D flip-flop and multiplexer 
as input. The D flip-flop is a sequential circuit that consists of four quantum NAND 
operations and one quantum NOT operation. The output of the quantum D flip-flop 
will go through the multiplexer as input. A quantum 2-to-1 MUX is designed using 
two quantum AND operations, one quantum NOT operation, and one quantum OR



5.5 Quantum Complex Programmable Devices 119

Fig. 5.16 Logic block of a PLD 

Fig. 5.17 Functional block 

operation. The multiplexer generates the desired output for the CPLD functional 
block. The circuit architecture of a quantum CPLD is shown in Fig. 5.18.



120 5 Programmable Devices in Quantum Computing

Fig. 5.18 Circuit architecture of quantum CPLD 

5.5.3 Working Principle 

Three inputs .|A >, .|B >, and .|C > firstly go thought the logic function (F .= AB 
.+ BC .+ AC). Then, the logic function is implemented using three quantum AND



5.6 Summary 121

operations and two quantum OR operations. Outputs of the logic function will go 
through the quantum XOR (XOR with .|0 >) operation and produce the output. 

Two inputs, where one is the output of XOR and another is the clock input, which 
will go through the D flip-flop. The D flip-flop uses one quantum NOT operation and 
four quantum NAND operations. The D flip-flop transfers the logic function output, 
if the CLK input sequence is .|1 >. If the CLK input is .|0 >, one of the inputs to 
each of the last two quantum NAND operations will be .|1 >, thus the output of the 
D flip-flop remains unchanged regardless of the values of the XOR output. 

Two quantum AND operations, one quantum NOT operation, and one quantum 
OR operation are used in 2-to-1 MUX. S. 0’ is created by applying the quantum NOT 
operation for input S. 0. The NOT gate and logic function output will go through as 
inputs for the first quantum AND operation. S. 0 and D flip-flop (DFF) output will go 
through as inputs for the second quantum AND operation. The output of these two 
quantum AND operations will go through the quantum OR operation to generate the 
CPLD functional block output. 

5.5.4 Applications 

CPLDs find their applications in much low-to-medium complexity digital control 
and signal processing circuits. Some of the important applications are listed below. 

1. CPLDs can be used as boot loaders for FPGAs and other programmable systems. 
2. CPLDs are often used as address decoders and custom state machines in digital 

systems. 
3. Due to their small size and low power consumption, CPLDs are ideal for use in 

portable and handheld digital devices. 
4. CPLDs are also used in safety-critical control applications. 
5. Complex programmable logic devices are ideal for high-performance, critical 

control applications. 
6. CPLD can be used in digital designs to perform the functions of the boot loader. 
7. CPLD is used for loading the configuration data of a field-programmable gate 

array from non-volatile memory. 
8. Generally, these are used in small design applications like address decoding. 
9. CPLDs are frequently used in many applications like in cost-sensitive, battery-

operated portable devices due to their low size and usage of low power. 

5.6 Summary 

This chapter has presented the overall idea of PLD in quantum computing. Indi-
vidual applications and working principles of programmable logic devices such 
as Programmable Logic Array (PLA), Programmable Array Logic (PAL), Field



122 5 Programmable Devices in Quantum Computing

Programmable Gate Arrays (FPGA), and Complex Programmable Logic Devices 
(CPLD) in quantum computing are discussed in detail in this chapter. In a quantum 
computing circuit, the excessive heat is produced from the circuit which can be very 
harmful and can destroy the whole circuit and ruin the computation. So, there must 
be a cooler attached to the circuit to consume the extra heat.



Chapter 6 
Programmable Devices 
in Quantum-DNA Computing 

6.1 Introduction 

This is a new computing mechanism the history where quantum computing and DNA 
computing combinely work. The programmable logic devices are the same here but 
the first portion will maintain the quantum computing technology and the last portion 
will maintain the DNA computing technology. By combining these two, the benefits 
of both could be captured. The input portion will be quantum part and the output 
portion will be DNA part. So, the inputs will be qubits and the outputs will be DNA 
molecular sequences. 

Quantum-DNA Programmable logic device needs some quantum operations and 
some DNA operations. This book is the first move where this new technology (Quan-
tum biocomputing) has been introduced for the first time. In the coming future, more 
implementation and development will come through research. Researchers are so 
excited with these quantum and DNA technology. Programmable devices in quan-
tum biological computing or quantum-DNA computing or quantum biocomputing 
involve using quantum technologies like qubits and quantum gates to design and 
manipulate biological systems, such as DNA, to perform computations. This field 
combines quantum computing principles with biological materials to create pow-
erful and potentially transformative computational tools. The programmable logic 
devices like PLA, PAL, FPGA, and CPLD in Quantum-DNA computing are the main 
concern of this chapter. 

6.2 Quantum-DNA Programmable Logic Array 

Programmable Logic Array is a type of PLD, which has both programmable AND 
array and programmable OR array. Quantum-DNA Programmable Logic Array 
(PLA) is a fixed architecture logic device with programmable Quantum AND oper-

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9_6 

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5349-9_6&domain=pdf
https://doi.org/10.1007/978-981-97-5349-9_6
https://doi.org/10.1007/978-981-97-5349-9_6
https://doi.org/10.1007/978-981-97-5349-9_6
https://doi.org/10.1007/978-981-97-5349-9_6
https://doi.org/10.1007/978-981-97-5349-9_6
https://doi.org/10.1007/978-981-97-5349-9_6
https://doi.org/10.1007/978-981-97-5349-9_6
https://doi.org/10.1007/978-981-97-5349-9_6
https://doi.org/10.1007/978-981-97-5349-9_6
https://doi.org/10.1007/978-981-97-5349-9_6
https://doi.org/10.1007/978-981-97-5349-9_6


124 6 Programmable Devices in Quantum-DNA Computing

ations followed by programmable DNA OR operations. PLA is a type of pro-
grammable logic device used to build a reconfigurable digital circuit. In other way, 
a PLA in quantum biocomputing refers to the application of PLA technology within 
the context of using quantum mechanics to solve biological problems. PLAs are pro-
grammable devices that can implement various combinational logic circuits, offering 
a flexible and reconfigurable approach to designing digital circuits. In quantum bio-
computing, this can be used to model and simulate biological systems, potentially 
leading to new insights and solutions in fields like drug discovery or genetic engi-
neering. In essence, PLAs offer a powerful and versatile tool for exploring the inter-
section of quantum mechanics and biology, potentially leading to new discoveries 
and solutions in various fields. 

6.2.1 Block Diagram 

Quantum-DNA PLA is a programmable logic device that has both Programmable 
Quantum AND array and Programmable DNA OR array. Hence, it is the most flexible 
PLD. The block diagram of Quantum-DNA PLA is shown in Fig. 6.1. 

Here, the inputs of Quantum AND operations are programmable. That means each 
Quantum AND operation has both normal and complemented inputs of variables. 

Quantum computing provides faster computation in logic devices than DNA com-
puting. So it is required to use a storage device (CACHE MEMORY) for making 
a balance between these two computing systems. DNA computing gives more stor-
age capacity, as a result, the output operation of the logic devices will perform in 
DNA computing. It is required to transform qubit into DNA molecule and, for this, a 

Fig. 6.1 Block diagram of quantum-DNA PLA



6.2 Quantum-DNA Programmable Logic Array 125

transformation process is used by which an excited magnetic state returns to its equi-
librium distribution. Here, the inputs of DNA OR operations are also programmable. 
So, any number of required product terms can be programmed, since all the outputs 
of DNA AND operations are applied as inputs to each DNA OR operation. Therefore, 
the outputs of DNA PAL will be in the form of the sum of products form. Quantum 
Computing produces more heat in circuits which can be used in DNA computing 
to perform DNA logic operations. For this, it is required to use a heat transfer cir-
cuit between quantum operations and DNA operations. The Quantum-DNA PLA 
implementation methods will improve the result of any quantum and DNA device. 

6.2.2 Circuit Architecture 

Quantum-DNA PLA is a programmable quantum and DNA device that has both 
Programmable Quantum AND array and Programmable DNA OR array. 
The following logic functions are used to construct a Quantum-DNA PLA: 

F1  = AB + A’C  
F2 = A’C’ + AB’ 
F3  = A’B + AB’.  

The given three functions are in sum of products form. The number of product terms 
present in the given logic functions F1, F2, and F3 are two. 

A.B’s products are used in both functions F2 and F3. So, five programmable 
Quantum AND gates and three programmable DNA OR gates are required for pro-
ducing those three functions. For the given problem, there are three inputs (A, B, C) 
and three outputs (F1, F2, F3). The complement of three inputs is obtained through 
quantum NOT gates. Thus the realization has six input lines (input with its comple-
ment). The given expression has six product terms and so the fuses are placed in the 
corresponding literals to obtain the product terms. Five quantum AND operations are 
designed using quantum computing. Quantum computing provides fast computation 
in logic devices than DNA computing. So, it is required to use a cache memory is 
used to store the quantum qubits. It is required to transform qubit into DNA molecule 
and for this, NMR Relaxation is used by which an excited magnetic state returns to 
its equilibrium distribution. Here, the inputs of DNA OR operations are also pro-
grammable. So, any number can be programmed for required product terms, since 
all the outputs of Quantum AND operations are applied as inputs to each DNA OR 
operation. Therefore, the outputs of Quantum-DNA PAL will be in the form of the 
sum of products form. The circuit architecture of Quantum-DNA PLA for functions 
F1, F2, and F3 is shown in Fig. 6.2 and the truth table of quantum-DNA PLA for 
functions F1, F2, and F3 is given in Table 6.1.



126 6 Programmable Devices in Quantum-DNA Computing

Fig. 6.2 Quantum-DNA PLA for functions F1, F2, and F3 

Table 6.1 Truth table of quantum-DNA PLA for functions F1, F2, and F3 

|A.> |B.> |C.> |F1.> |F2.> |F3. >

|0.> |0.> |0.> TGGATC ACCTAG TGGATC 

|0.> |0.> |1.> ACCTAG TGGATC TGGATC 

|0.> |1.> |0.> TGGATC ACCTAG ACCTAG 

|0.> |1.> |1.> ACCTAG TGGATC ACCTAG 

|1.> |0.> |0.> TGGATC ACCTAG ACCTAG 

|1.> |0.> |1.> TGGATC ACCTAG ACCTAG 

|1.> |1.> |0.> ACCTAG TGGATC TGGATC 

|1.> |1.> |1.> ACCTAG TGGATC TGGATC



6.3 Quantum-DNA Programmable Array Logic 127

6.2.3 Working Principle 

According to truth table (Table 6.1) of Quantum-DNA PLA, it is necessary to do the 
following operations to get desired output qubits: 

1. For input qubits |A. >, |B. >, |C.> =|0. >, |0. >, |0.> function F2 produces ACCTAG. 
2. For input qubits |A. >, |B. >, |C.> =|0. >, |0. >, |1.> function F1 produces ACCTAG. 
3. For input qubits |A. >, |B. >, |C.> =|0. >, |1. >, |0.> functions F2 and F3 produce 

ACCTAG. 
4. For input qubits |A. >, |B. >, |C.> =|0. >, |1. >, |1.> functions F1 and F3 produce 

ACCTAG. 
5. For input qubits |A. >, |B. >, |C.> =|1. >, |0. >, |0.> functions F2 and F3 produce 

ACCTAG. 
6. For input qubits |A. >, |B. >, |C.> =|1. >, |0. >, |1.> functions F2 and F3 produce 

ACCTAG. 
7. For input qubits |A. >, |B. >, |C.> =|1. >, |1. >, |0.> function F1 produces ACCTAG. 
8. For input qubits |A. >, |B. >, |C.> =|1. >, |1. >, |1.> function F1 produces ACCTAG. 

6.3 Quantum-DNA Programmable Array Logic 

Programmable Array Logic (PAL) is a logic device, which has a programmable AND 
array and a fixed OR array. It is used to realize a logic function. In this PLD, only AND 
gates are programmable. Hence it is easier to work with PAL. The product terms can 
be programmed through the fuse link. It means the user can decide the connection 
between the inputs and the AND gates. If a particular input line is to be connected to 
the AND gate, then the fuse link must be placed at the interconnection. The AND gate 
outputs are then fed as an input to the fixed OR gate. Depending upon the required 
function, the output line of the AND gate is connected to the corresponding input 
of the OR gate. On other way, quantum biocomputing explores the use of quantum 
systems to model and simulate biological processes, while programmable array logic 
(PAL) is a type of programmable logic device used in classical computing. While 
both involve manipulating data to solve problems, quantum biocomputing leverages 
quantum phenomena, like superposition and entanglement, whereas PALs imple-
ment logic circuits with programmable AND and OR gates. Here, superposition, 
entanglement, and other quantum phenomena are exploited to represent and manip-
ulate biological data. In essence, quantum biocomputing focuses on using quantum 
mechanics to understand and solve biological problems, while programmable array 
logic provides a tool for building custom logic circuits in classical computing.



128 6 Programmable Devices in Quantum-DNA Computing

6.3.1 Block Diagram 

Quantum-DNA PAL is a programmable logic device that has both Programmable 
Quantum AND array and fixed DNA OR array. Hence, it is the most flexible PLD. 
The block diagram of Quantum-DNA PAL is shown in Fig. 6.3. 

Here, the inputs of quantum AND operations are programmable. That means each 
quantum AND operation has both normal and complemented inputs of variables. So, 
based on the requirement, any of those inputs can be programmed. So, the required 
product terms can be generated by using these quantum AND operations. 

Quantum computing provides faster computation in logic devices than DNA com-
puting. So, it is required to use a storage device (CACHE MEMORY) to make a 
balance between these two computing systems. DNA computing gives more storage 
capacity, as a result, the output operation of the logic devices will perform in DNA 
computing. It is required to transform qubit into DNA molecule and for this, it is 
required to use a transformation process by which an excited magnetic state returns 
to its equilibrium distribution. Here, the inputs of DNA OR operations are fixed. 
Quantum computing produces more heat in circuits which can be used in DNA com-
puting to perform DNA logic operations. For this, it is required to use a heat transfer 
circuit between quantum operations and DNA operations. The quantum-DNA PAL 
implementation methods will improve the result of any logic device. 

Fig. 6.3 Block diagram of quantum-DNA PAL



6.3 Quantum-DNA Programmable Array Logic 129

6.3.2 Circuit Architecture 

Quantum-DNA PAL is a programmable logic device that has Programmable Quan-
tum AND array & fixed DNA OR array. 

Consider the following quantum logic functions using Quantum PAL. 

F1  = AB + BC + AC  
F2 = A’C’ + AB’. 

The given two functions are in sum of products form. The number of product terms 
present in the given Boolean functions F1 and F2 are three and two, respectively. 
The truth table of Quantum-DNA PAL for functions F1 and F2 is given in Table 6.2. 

Six programmable Quantum AND operations and two fixed DNA OR operations 
are required for producing those two functions. But, it is required to perform an extra 
two Quantum OR operations as three product terms for each function are required to 
do OR operation. The corresponding Quantum PAL is shown in the following figure. 
Consider the realization of the Boolean expression F1 = AB + BC + AC F2 = A’C’ 
+ AB’ using Quantum Programmable Array Logic. 

For the given problem, there are three inputs (A, B, C) and two outputs (F1 and 
F2). The complement of three inputs is obtained through Quantum NOT operation. 
Thus, the realization has six input lines (input with its complement). 

The given first expression has three product terms and the second expression has 
two product terms. But, as the DNA OR operation is fixed, the fuses are placed in the 
corresponding literal to obtain the product terms. Six quantum AND operations are 
designed using quantum computing. Quantum computing provides fast computation 
in logic devices than DNA computing. So, it is required to use a cache memory is used 
to store the quantum qubits. It is required to transform qubit into DNA molecule. 
For this, NMR Relaxation is used by which an excited magnetic state returns to 
its equilibrium distribution. Here, the inputs of DNA OR operations are fixed. All 
the outputs of Quantum AND operations are applied as inputs to each DNA OR 
operation. Therefore, the outputs of Quantum-DNA PAL will be in the form of the 

Table 6.2 Truth table of quantum-DNA PAL for functions F1 and F2 

|A.> |B.> |C.> |F1.> |F2. >

|0.> |0.> |0.> TGGATC ACCTAG 

|0.> |0.> |1.> TGGATC TGGATC 

|0.> |1.> |0.> TGGATC ACCTAG 

|0.> |1.> |1.> ACCTAG TGGATC 

|1.> |0.> |0.> TGGATC ACCTAG 

|1.> |0.> |1.> ACCTAG ACCTAG 

|1.> |1.> |0.> ACCTAG TGGATC 

|1.> |1.> |1.> ACCTAG TGGATC



130 6 Programmable Devices in Quantum-DNA Computing

sum of products form. The architecture of Quantum-DNA PAL for functions F1 and 
F2 is given in Fig. 6.4. 

6.3.3 Working Principle 

According to the truth table (Table 6.2) of Quantum-DNA PAL, it is necessary to do 
the following operations to get the desired output qubits: 

1. For input qubits |A. >, |B. >, |C.> =|0. >, |0. >, and |0.> function F2 produces 
ACCTAG. 

2. For input qubits |A. >, |B. >, |C.> =|0. >, |0. >, and |1.> none of function produces 
ACCTAG. 

3. For input qubits |A. >, |B. >, |C.> =|0. >, |1. >, and |0.> function F2 produces 
ACCTAG. 

4. For input qubits |A. >, |B. >, |C.> =|0. >, |1. >, and |1.> function F1 produces 
ACCTAG. 

5. For input qubits |A. >, |B. >, |C.> =|1. >, |0. >, and |0.> function F2 produces 
ACCTAG. 

6. For input qubits |A. >, |B. >, |C.> =|1. >, |0. >, and |1.> functions F1 and F2 produce 
ACCTAG. 

7. For input qubits |A. >, |B. >, |C.> =|1. >, |1. >, and |0.> function F1 produces 
ACCTAG. 

8. For input qubits |A. >, |B. >, |C.> =|1. >, |1. >, and |1.> function F1 produces ACC-
TAG.



6.4 Quantum-DNA Field Programmable Gate Arrays 131

Fig. 6.4 Quantum-DNA PAL for functions F1 and F2 

6.4 Quantum-DNA Field Programmable Gate Arrays 

Quantum-DNA FPGAs have a hierarchy of reconfigurable interconnects that allow 
blocks to be linked together to form an array of Quantum-DNA programmable logic 
blocks. Logic blocks can be configured to execute sophisticated combinatorial oper-



132 6 Programmable Devices in Quantum-DNA Computing

ations or to work as simple logic gates such as quantum or DNA AND and XOR. The 
memory components which might be simple flip-flops or larger memory blocks, are 
included in most Quantum-DNA FPGA logic blocks. Many Quantum-DNA FPGAs 
can be reprogrammed to execute various logic tasks, allowing for flexible recon-
figurable computing similar to that done in software. In other way, FPGAs are not 
directly used in quantum biological computing in the way they are used in general-
purpose quantum computing. However, they can play a crucial role in supporting 
and enabling research and development in this field, particularly for simulating and 
controlling quantum systems. FPGAs offer the flexibility and speed needed for high-
performance parallel processing, which is essential for complex quantum algorithms 
and simulations. In summary, while FPGAs aren’t directly part of the “quantum bio-
logical computer” itself, they are valuable tools for enabling research, development, 
and simulation in this field. Their ability to perform high-speed parallel processing 
and be customized for specific tasks makes them ideal for supporting the complex 
challenges of quantum biology. 

6.4.1 Block Diagram 

Quantum computing use Qubits (|0.> and |1. >) and DNA Computing system use 
Molecule to represent information. In Quantum-DNA computing FPGA design, the 
qubit will work as input for the programmable logic devices. Quantum computing 
provides faster computation in logic devices than DNA computing. So, it is required 
to use a storage device for making a balance between these two computing systems. 
DNA computing gives more storage capacity, as a result, the output operation of the 
logic devices will perform in DNA computing. It is required to transform qubit into 
DNA molecule. For this, a transformation process needs to be done by which an 
excited magnetic state returns to its equilibrium distribution. Quantum Computing 
produces more heat in circuits which can be used in DNA computing to perform DNA 
logic operations. For this, a heat transfer circuit is needed to use between Quantum and 
DNA operations. The Quantum-DNA FPGA implementation methods will improve 
the result of any logic device. A general organization using block diagram is shown 
in Fig. 6.5. 

6.4.2 Circuit Architecture 

Quantum-DNA FPGA logic block is designed by connecting Flip-Flops, Look-up 
Tables (LUT), and Multiplexers. Here a simple Quantum-DNA FPGA logic block is 
designed by using a D Flip-Flop, a Look-up Table (LUT), and a multiplexer. A two-
input LUT consists of one Quantum AND, one Quantum NOT and one Quantum OR 
operation. The output of the LUT will go through the D Flip-Flop and multiplexer as 
input. The D Flip-Flop is a sequential circuit that consists of four Quantum NAND



6.4 Quantum-DNA Field Programmable Gate Arrays 133

Fig. 6.5 General organization of quantum-DNA circuit 

operations and one Quantum NOT operation. The output of the Quantum D Flip-
Flop will go through the multiplexer as input. A Quantum 2-to-1 MUX is designed 
using two Quantum AND operations, one Quantum NOT operation and one DNA 
OR operation. Outputs of the two Quantum AND operations will be stored in a 
Quantum cache memory. NMR Relaxation is used to transfer the qubit into the DNA 
sequence. DNA OR operation performs OR of these two DNA sequences. A heat 
transfer circuit is used to transfer the extra heat produced by the Quantum circuit to 
the DNA circuit. The circuit architecture of the Quantum-DNA FPGA logic block is 
shown in Fig. 6.6. 

6.4.3 Working Principle 

Two inputs |A0.> and |A1.> first go through the Look-up Tables (LUT). Then, the 
LUT uses one Quantum AND operation by applying the Quantum NOT operation to 
the output of the Quantum NAND operation, one Quantum NOT operation and one 
Quantum OR operation. In LUT, |A0.> will go through Quantum NOT operation. 
|A0. > and |A1. >will go through Quantum AND operation. The outputs of the Quan-
tum NOT AND operations will go through the Quantum OR operation and produce 
the LUT output. 

2 input, one is the output of LUT and another is clock input will go through the D 
flip-flop. The D flip-flop uses one Quantum NOT operation and four Quantum NAND



134 6 Programmable Devices in Quantum-DNA Computing

Fig. 6.6 Circuit architecture of quantum-DNA FPGA 

operations. The D flip-flop transfers the LUT output, if the CLK input sequence is 
|1. >. If the CLK input is |0. >, one of the inputs to each of the last two Quantum 
NAND operations will be |1. >. Thus, the output of the D flip-flop remains unchanged 
regardless of the values of the LUT output.



6.5 Quantum-DNA Complex Programmable Devices 135

Two Quantum AND operations, one Quantum NOT operation, and one DNA OR 
operation are used in 2-to-1 MUX. S. 0’ (Complement of S. 0) is created by applying 
the Quantum NOT operation for input S. 0. The NOT gate and LUT output will go 
through as inputs for the first Quantum AND operation. S. 0 and D flip-flop (DFF) 
output will go through as inputs for the second Quantum AND operation. The output 
of these two Quantum AND operations will store in a Quantum cache memory. Cache 
memory stores these qubits as quantum computing is faster than DNA computing. 
NMR Relaxation is used to transfer the qubit into the DNA sequence. DNA OR 
operation performs OR of these two DNA sequences. Quantum circuits produce 
more heat than DNA circuits. For this, a heat transfer circuit is used to transfer the 
extra heat produced by the Quantum circuit to the DNA circuit. DNA OR operation 
uses this heat to produce the FPGA output. 

6.5 Quantum-DNA Complex Programmable Devices 

Complex programmable logic device (CPLD), is one kind of integrated circuit that 
application designers build-up to implement digital hardware like mobile phones. 
These can handle knowingly higher designs than SPLDs (simple programmable logic 
devices) but it offers less logic than FPGAs (field-programmable gate arrays). The 
CPLDs include numerous logic blocks; each of the blocks includes 8 to 16 macrocells. 
Because every logic block executes a specific function, all of the macrocells in a logic 
block are fully connected. Depending upon the use, these blocks may or may not be 
connected to one another. 

In terms of complexity, CPLD (complex programmable logic device) lies in 
between SPLD (simple programmable logic device) and FPGA and thus, it inherits 
features from both these devices. CPLDs are more complex than SPLDs but they 
are complex than FPGAs. In another way, a CPLD in quantum biological computing 
refers to a quantum computer, specifically designed to handle the complexities of 
biological systems. This device, leveraging the principles of quantum mechanics, 
aims to solve problems in biological sciences that are computationally intractable 
for classical computers. It involves manipulating and controlling qubits (quantum 
bits) to perform computations on a quantum level, enabling potential advancements 
in areas like drug discovery, protein folding, and understanding complex biological 
processes. 

For this, it is required to use a heat transfer circuit between Quantum and DNA 
operations. In this way, the Quantum-DNA CPLD implementation methods will 
improve the result of any logic device.



136 6 Programmable Devices in Quantum-DNA Computing

6.5.1 Circuit Architecture 

The CPLD function block is designed by connecting Flip-Flops, Logic function and 
Multiplexers. Here a simple Quantum CPLD functional block is designed by using a 
D Flip-Flop, a logic function and a multiplexer. A simple logic function F = AB + BC 
+ CA consists of three Quantum AND, and two Quantum OR operations. The output 
of the logic function will XOR with zero. The output of the XOR will go through the D 
Flip-Flop and multiplexer as input. The D Flip-Flop is a sequential circuit that consists 
of four Quantum NAND operations and one Quantum NOT operation. The output of 
the Quantum D Flip-Flop will go through the multiplexer as input. A Quantum 2-to-1 
MUX is designed using two Quantum AND operations, one Quantum NOT operation 
and one DNA OR operation. The outputs of the two Quantum AND operations will 
store in a Quantum cache memory. The NMR Relaxation is used to transfer the 
qubit into a DNA sequence. The DNA OR operation performs OR of these two DNA 
sequences. A heat transfer circuit is used to transfer the extra heat produced by the 
Quantum circuit to use in the DNA circuit. The circuit architecture of Quantum-DNA 
CPLD is shown in Fig. 6.7. 

6.5.2 Working Principle 

Three inputs |A. >, |B.> and |C.> first go thought the logic function (F = AB + BC + 
AC). Then, the logic function is implemented using three Quantum AND operations 
and two Quantum OR operations. Finally, the outputs of the logic function will go 
through the Quantum XOR (XOR with |0. >) operation and produce the output. 

Two inputs, one is the output of XOR and another is clock input that will go 
through the D flip-flop. The D flip-flop uses one Quantum NOT operation and four 
Quantum NAND operations. The D flip-flop transfers the XOR output, if the CLK 
input sequence is |1. >. If the CLK input is |0. >, one of the inputs to each of the last two 
Quantum NAND operations will be |1. >. Thus, the output of the D flip-flop remains 
unchanged regardless of the values of the XOR output. 

Two Quantum AND operations, one Quantum NOT operation and one DNA OR 
operation are used in 2-to-1 MUX. The complement of S. 0 is created by applying 
the Quantum NOT operation for input S. 0. The NOT gate and XOR outputs will go 
through as inputs for the first Quantum AND operation. S. 0 and D flip-flop (DFF) 
output will go through as inputs for the second Quantum AND operation. The output 
of these two Quantum AND operations will store in a Quantum cache memory. Cache 
memory stores these qubits as quantum computing is faster than DNA computing. 
NMR Relaxation is used to transfer the qubit into the DNA sequence. DNA OR 
operation performs OR of these two DNA sequences. Quantum circuits produce 
more heat than DNA circuits. For this, a heat transfer circuit is used to transfer the 
extra heat produced by the Quantum circuit to the DNA circuit. DNA OR operation 
used this heat to produce the CPLD output.



6.6 Applications 137

Fig. 6.7 Circuit architecture of quantum-DNA CPLD 

6.6 Applications 

The applications of Quantum PLD and DNA PLD are described in the previous 
two chapters in individual section. So, both of their applications can be achieved in 
Quantum-DNA computing. All applications of Quantum PLD and DNA PLD can 
be implemented in future.



138 6 Programmable Devices in Quantum-DNA Computing

6.7 Summary 

This chapter has discussed about the PLD in Quantum-DNA computing. In each 
circuit, there were two parts. The first part is Quantum part, where the qubits are 
used as inputs and the second or last part is the DNA part where DNA sequences 
are used to express the outputs. A quantum cache memory is used to store quantum 
bits temporarily. A data conversion circuit is used to convert the qubits into DNA 
sequences. A heat transfer circuit is also used here to transfer excessive heat from 
the quantum part to DNA part. The next chapter is the opposite of this chapter which 
is called DNA-Quantum PLD.



Chapter 7 
Programmable Devices 
in DNA-Quantum Computing 

7.1 Introduction 

In this chapter, the topic of DNA-Quantum PLD (Programmable Logic Device) will 
be discussed. It is a logic device that has both Programmable DNA AND array and 
Programmable Quantum OR array. Hence, it is the most flexible PLD. The design 
inputs of PLD in DNA operations are programmable. That means each DNA opera-
tion has both normal and complemented inputs of variables. So, based on the require-
ment, any of those inputs can be programmed. So, it is possible to generate only the 
required product terms by using these Quantum operations. A storage device needs to 
store DNA sequences between these two computing systems. DNA computing pro-
duces less heat than quantum computing. As a result, the extra heat from the outside 
is needed to supply the DNA circuit. DNA molecules are needed to transform into 
qubits and for this, a transformation process (Trap-Ion) is used by which an excited 
magnetic state returns to its equilibrium distribution. Quantum computing produces 
more heat in circuits which can be used in further DNA computing the heat can be 
transferred to a cooler circuit to cool down. 

Quantum operations are also programmable in this case. Because all the outputs 
of DNA operations are applied as inputs to each Quantum OR operation, any number 
of needed product terms may be coded. As a result, DNA-Quantum devices’ outputs 
will be in the form of a sum of product forms. In other way, programmable devices in 
biological quantum computing or DNA-quantum computing or bio-quantum com-
puting explore using biological systems like DNA/RNA to create programmable 
computers, similar to how quantum computers use qubits. These biological systems 
offer potential for revolutionary advancements in fields like pharmaceuticals. While 
quantum computers can perform complex calculations and simulations, biological 
computers offer a different approach to computation by leveraging the inherent com-
plexity and information storage capabilities of biological molecules. The field of bio-
logical quantum computing is still in its early stages of development, with ongoing 
research exploring the potential of these systems and creating stable and reliable pro-

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9_7 

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5349-9_7&domain=pdf
https://doi.org/10.1007/978-981-97-5349-9_7
https://doi.org/10.1007/978-981-97-5349-9_7
https://doi.org/10.1007/978-981-97-5349-9_7
https://doi.org/10.1007/978-981-97-5349-9_7
https://doi.org/10.1007/978-981-97-5349-9_7
https://doi.org/10.1007/978-981-97-5349-9_7
https://doi.org/10.1007/978-981-97-5349-9_7
https://doi.org/10.1007/978-981-97-5349-9_7
https://doi.org/10.1007/978-981-97-5349-9_7
https://doi.org/10.1007/978-981-97-5349-9_7
https://doi.org/10.1007/978-981-97-5349-9_7


140 7 Programmable Devices in DNA-Quantum Computing

grammable biological devices presents significant challenges, but ongoing research 
is making progress in this area. If successful, biological quantum computing could 
offer a paradigm shift in how we approach computation, with potential applications 
in various scientific and technological fields. 

7.2 DNA-Quantum Programmable Logic Array 

In this section, the first part of the DNA-Quantum PLA considers DNA operations and 
the last part considers quantum operations. It is important to note that the both parts 
(Quantum Part and DNA Part) are taken from the structure of the DNA-Quantum 
PLA. In other way, PLAs are a type of programmable logic device used to imple-
ment combinational logic circuits. They can be used in both classical and quantum 
computing, and their application in biological quantum computing explores the inter-
section of these fields. This field explores the use of biological systems (like DNA 
and RNA) to perform quantum computations. It combines the principles of quantum 
mechanics with the capabilities of biological molecules. The use of PLAs or simi-
lar programmable logic devices in biological quantum computing could lead to the 
development of novel quantum algorithms, quantum simulators, and even quantum-
DNA computers. In addition, this field of multiple-valued computing, which deals 
with systems that use more than two states (like 0 and 1), is also relevant to both 
quantum and biological computing. A book titled âŁœMultiple-Valued Computing 
in Quantum Molecular BiologyâŁž explores this area in detail. 

7.2.1 Block Diagram 

DNA-Quantum PLA is a programmable logic device that has both Programmable 
DNA AND array and Programmable Quantum OR array. Hence, it is the most flexible 
PLD. The block diagram of DNA-Quantum PLA is shown in Fig. 7.1. 

Here, the inputs of DNA AND operations are programmable. That means each 
DNA AND operation has both normal and complemented inputs of variables. A 
storage device needs to store DNA sequences between these two computing sys-
tems. DNA computing produces less heat than quantum computing. As a result, it 
is required to supply extra heat from outside in the DNA circuit. It is required to 
transform DNA molecules into qubits. For this, it is necessary to use a storage device 
and a transformation process (Trap-Ion) by which an excited magnetic state returns 
to its equilibrium distribution. 

Here, Quantum OR operations are also programmable. So, any number can be 
programmed for required product terms, since all the outputs of DNA AND opera-
tions are applied as inputs to each Quantum OR operation. Therefore, the outputs of 
DNA-quantum PAL will be in the form of the sum of products form.



7.2 DNA-Quantum Programmable Logic Array 141

Table 7.1 Truth Table of DNA-Quantum PLA for Functions F1, F2, and F3 

A B C F1 F2 F3 

TGGATC TGGATC TGGATC |0.> |1.> |0. >

TGGATC TGGATC ACCTAG |1.> |0.> |0. >

TGGATC ACCTAG TGGATC |0.> |1.> |1. >

TGGATC ACCTAG ACCTAG |1.> |0.> |1. >

ACCTAG TGGATC TGGATC |0.> |1.> |1. >

ACCTAG TGGATC ACCTAG |0.> |1.> |1. >

ACCTAG ACCTAG TGGATC |1.> |0.> |0. >

ACCTAG ACCTAG ACCTAG |1.> |0.> |0. >

7.2.2 Circuit Architecture 

DNA-quantum PLA is a programmable logic device that has both Programmable 
DNA AND array and Programmable quantum OR array. 

The following logic functions are used to construct the DNA-quantum PLA: 
F1  = AB + A’C  
F2 = A’C’ + AB’ 
F3  = A’B + AB’.  

The given three functions are in sum of products form. The number of product terms 
present in the given Boolean functions F1, F2 and F3 is two. The truth table of 
DNA-quantum PLA for functions F1, F2, and F3 is given in Table 7.1. 

Fig. 7.1 Block diagram of DNA-quantum PLA



142 7 Programmable Devices in DNA-Quantum Computing

A.B’s products are used in both functions F2 and F3. So, five programmable 
Quantum AND gates and three programmable DNA OR gates are required for pro-
ducing those three functions. For the given problem, there are three inputs (A, B, C) 
and three outputs (F1, F2, F3). The complement of three inputs is obtained through 
DNA NOT operation. Thus, the realization has six input lines (input with its comple-
ment). The given expression has six product terms and so the fuses are placed in the 
corresponding literals to obtain the product terms. Five DNA AND operations are 
designed using DNA computing. It is required to use a DNA cache memory to store 
the DNA sequences. It is also needed to transform DNA molecules into qubits and 
for this, Trap-Ion is used by which an excited magnetic state returns to its equilibrium 
distribution. Here, Quantum OR operations are also programmable. Therefore, the 
outputs of DNA-Quantum PAL will be in the form of the sum of products form. 
Circuit architecture of DNA-Quantum PLA is shown in Fig. 7.2. 

7.2.3 Working Principle 

According to the truth table as shown in Table 7.1 of the DNA-Quantum PLA, it is 
necessary to do the following operations to obtain the desired output sequence: 

1. For inputs A, B, C = TGGATC, TGGATC, TGGATC function |F2.> produces 
|1. >. 

2. For inputs A, B, C = TGGATC, TGGATC, ACCTAG function |F1.> produces 
|1. >. 

3. For inputs A, B, C = TGGATC, ACCTAG, TGGATC functions |F2.> and |F3. >
produce |1. >. 

4. For inputs A, B, C = TGGATC, ACCTAG, ACCTAG functions |F1.> and |F3. >
produce |1. >. 

5. For inputs A, B, C = ACCTAG, TGGATC, TGGATC functions |F2.> and |F3. >
produce |1. >. 

6. For inputs A, B, C = ACCTAG, TGGATC, ACCTAG functions |F2.> and |F3. >
produce |1. >. 

7. For inputs A, B, C = ACCTAG, ACCTAG, TGGATC function |F1.> produces 
|1. >. 

8. For inputs A, B, C = ACCTAG, ACCTAG, ACCTAG function |F1.> produces 
|1. >. 

7.3 DNA-Quantum Programmable Array Logic 

Programmable Array Logic (PAL) is a logic device, which has a programmable DNA 
AND array and fixed DNA OR array. It is used to realize a logic function. In this DNA 
PLD, only DNA AND operations are programmable and hence it is easier to work



7.3 DNA-Quantum Programmable Array Logic 143

Fig. 7.2 Circuit architecture of DNA-quantum PLA 

with DNA PAL. Depending upon the required function, the output line of the DNA 
AND operation is connected to the corresponding input of the DNA OR operation. 

7.3.1 Block Diagram 

DNA-Quantum PLA is a programmable logic device that has Programmable DNA 
AND array and fixed Quantum OR array. Hence, it is the most flexible PLD. The 
block diagram of the DNA-Quantum PAL is shown in Fig. 7.3.



144 7 Programmable Devices in DNA-Quantum Computing

Here, the inputs of DNA AND operations are programmable. That means each 
DNA AND operation has both normal and complemented inputs of variables. DNA 
computing produces less heat than quantum computing. As a result, it is required to 
supply extra heat from outside in the DNA circuit. It is required to transform DNA 
molecules into qubits and, for this, a storage device is used and a transformation 
process (Trap-Ion) by which an excited magnetic state returns to its equilibrium 
distribution. Quantum computing produces more heat in circuits which can be used 
in further DNA computing can transfer the heat in a cooler circuit to cool down. 

Here, Quantum OR operations are fixed. All the outputs of DNA AND operations 
are applied as inputs to each Quantum OR operation. Therefore, the outputs of DNA-
quantum PAL will be in the form of the sum of products form. 

7.3.2 Circuit Architecture 

DNA-quantum PAL is a programmable logic device that has both Programmable 
DNA AND array and fixed quantum OR array. 

The following logic functions are used to construct the DNA-quantum PAL: 

F1  = AB + BC + AC;  and  
F2 = A’C’ + AB’. 

The given two functions are in sum of products form. The number of product terms 
present in the given Boolean functions F1 and F2 are three and two, respectively. 
The truth table of DNA-quantum PAL for Functions F1 and F2 is given in Table 7.2. 

Fig. 7.3 Block diagram of the DNA-Quantum PAL



7.3 DNA-Quantum Programmable Array Logic 145

Six programmable DNA AND operations and two fixed quantum OR operations 
are required for producing those two functions. But, it is required to perform an extra 
two Quantum OR operations as three product terms for each function are required 
to do OR operation. 

Consider the realization of the Boolean expression F1 = AB + BC + AC F2 = 
A’C’ + AB’ using Quantum Programmable Logic Array. 

It is required to use a cache memory is used to store the DNA sequences. It needs 
to transform DNA molecules into qubits and for this, Trap-Ion is used by which 
an excited magnetic state returns to its equilibrium distribution. Here, Quantum OR 
operations are fixed. All the outputs of DNA AND operations are applied as inputs 
to each Quantum OR operation. Therefore, the outputs of DNA-Quantum PAL will 
be in the form of the sum of products form. Circuit architecture of DNA-Quantum 
PAL is shown in Fig. 7.4. 

7.3.3 Working Principle 

According to the truth table (Table 7.2) of the DNA-Quantum PAL, it is necessary to 
do the following operations to obtain the desired output sequence. 

1. For inpus A, B, C = TGGATC, TGGATC, TGGATC function |F2. > produces |1. >
2. For inputs A, B, C = TGGATC, TGGATC, ACCTAG none of function produces 

|1. >. 
3. For inputs A, B, C = TGGATC, ACCTAG, TGGATC function |F2.> produces 

|1. >. 
4. For inputs A, B, C = TGGATC, ACCTAG, ACCTAG function |F1.> produces 

|1. >. 
5. For inputs A, B, C = ACCTAG, TGGATC, TGGATC function |F2.> produces 

|1. >. 
6. For inputs A, B, C = ACCTAG, TGGATC, ACCTAG functions |F1.> and |F2. >

produce |1. >. 

Table 7.2 Truth Table of DNA-Quantum PAL for Functions F1 and F2 

A B C F1 F2 

TGGATC TGGATC TGGATC |0.> |1. >

TGGATC TGGATC ACCTAG |0.> |0. >

TGGATC ACCTAG TGGATC |0.> |1. >

TGGATC ACCTAG ACCTAG |1.> |0. >

ACCTAG TGGATC TGGATC |0.> |1. >

ACCTAG TGGATC ACCTAG |1.> |1. >

ACCTAG ACCTAG TGGATC |1.> |0. >

ACCTAG ACCTAG ACCTAG |1.> |0.>



146 7 Programmable Devices in DNA-Quantum Computing

Fig. 7.4 Circuit architecture of DNA-Quantum PAL



7.4 DNA-Quantum Field Programmable Gate Arrays 147

7. For inputs A, B, C = ACCTAG, ACCTAG, TGGATC function |F1.> produces 
|1. >. 

8. For inputs A, B, C = ACCTAG, ACCTAG, ACCTAG function |F1.> produces 
|1. >. 

7.4 DNA-Quantum Field Programmable Gate Arrays 

A DNA-Quantum Programmable Logic Device is a DNA-Quantum Field Pro-
grammable Gate Array. It’s a programmable digital integrated circuit with adjustable 
logic blocks and programmable connections between them. The end-users can con-
figure it to implement specific applications. Customers or designers can use pro-
grammable linkages to perform certain operations easily. In other way, FPGAs 
have potential applications in bioquantum computing, primarily for accelerating and 
improving the efficiency of calculations related to quantum dynamics and simula-
tions. FPGAs’ parallel processing capabilities and high speed make them suitable 
for tasks that are computationally intensive and repetitive. Furthermore, they can 
offer energy efficiency compared to traditional CPUs and GPUs, which is crucial for 
supercomputing centers. In summary, FPGAs offer a promising solution for accel-
erating and optimizing calculations in bioquantum computing, particularly in areas 
like quantum dynamics simulation and error correction. Their parallel processing, 
speed, and energy efficiency make them valuable tools for pushing the boundaries of 
quantum computing research and applications. In this section, DNA-Quantum FPGA 
is explained in detail. 

7.4.1 Block Diagram 

Quantum computing uses qubits (|0.> and |1. >) and DNA computing system uses 
molecules to represent information. In DNA-Quantum computing FPGA design, 
DNA sequences will work as input for the programmable logic devices. DNA com-
puting produces less heat than quantum computing. As a result, it needs to supply 
extra heat from outside in the DNA circuit. It is required to transform DNA molecules 
into qubits and for this, a storage device is used and a transformation process by which 
an excited magnetic state returns to its equilibrium distribution. Quantum Comput-
ing produces more heat in circuits which can be used in further DNA computing can 
transfer the heat in a cooler circuit to cool down. The DNA- Quantum FPGA imple-
mentation methods will improve the result of any logic device. The block diagram 
of DNA-Quantum FPGA is given in Fig. 7.5.



148 7 Programmable Devices in DNA-Quantum Computing

Fig. 7.5 General organization of DNA-quantum circuit 

7.4.2 Circuit Architecture 

DNA-Quantum FPGA logic block is designed by connecting Flip-Flops, Look-up 
Tables (LUT), and Multiplexers. Here, a simple DNA-Quantum FPGA logic block is 
designed by using a DNA D Flip-Flop, a DNA Look-up Table (LUT), and a Quantum 
multiplexer. The circuit architecture of DNA-Quantum FPGA is shown in Fig. 7.6. 

A simple two-input DNA LUT consists of one DNA AND, one DNA NOT, and 
one DNA OR operation. The output of the LUT will go through the DNA D Flip-Flop 
and to quantum multiplexer as input. The DNA D Flip-Flop is a sequential circuit that 
consists of four DNA NAND operations and one DNA NOT operation. The output 
of the D Flip-Flop will go through the quantum multiplexer as input. Outputs of the 
LUT and D flip-flop will be stored in a DNA cache memory. Trap Ione is used to 
transfer the DNA sequence into qubits. A quantum 2-to-1 MUX is designed using 
two quantum AND operations, one quantum NOT operation, and one quantum OR 
operation. The multiplexer generates the desired output for the FPGA logic block 
as qubits. Heat is supplied from outside to the DNA circuit for operation. A heat 
transfer circuit is used in the quantum multiplexer circuit to transfer the extra heat 
produced by the quantum circuit to the outside to cool it. 

7.4.3 Working Principle 

Two inputs A0 and A1 first go through the Look-up Tables (LUT). The LUT uses 
one AND gate for AND operation by applying the NOT gate to the output of the 
NAND gate, one NOT gate, and one OR gate. In LUT, if both of the input sequences 
are “false” (TGGATC), then one will combine with the supplied “true” ACCTAG 
sequence in DNA NAND gate to produce a double-stranded molecule. DNase will



7.4 DNA-Quantum Field Programmable Gate Arrays 149

Fig. 7.6 DNA-quantum FPGA



150 7 Programmable Devices in DNA-Quantum Computing

destroy the remaining input sequence and the double-stranded sequence will generate 
a “true” ACCTAG sequence. This “true” sequence will first go through DNA NOT 
gate and results in a “false” evaluation. A1 “false” sequence will go through DNA 
NOT gate and combine with the supplied “true” ACCTAG sequence in DNA NOT 
gate, then ACCTAG will bind with the provided ACCTAG sequence, representing a 
“true” evaluation. The output of these two DNA NOT gates (TGGATC, ACCTAG) 
will go through the OR gate, then the “true” ACCTAG sequence will combine with 
the “false” TGGATC sequences to produce a double-stranded sequence. DNase will 
destroy the remaining “false” sequence and the gate will result in a “true” evaluation 
in the LUT output. 

If one input sequence A0 is “false” and the other A1 is “true”, then the “false” one 
will combine with the supplied “true” ACCTAG sequence in DNA NAND gate to pro-
duce a double-stranded molecule. DNase will destroy the remaining input sequence 
and the double-stranded sequence will generate a “true” ACCTAG sequence. This 
“true” sequence will go through DNA NOT gate and result in a “false” evaluation. 
A1 “true” sequence will go through DNA NOT gate and combine with the supplied 
“true” ACCTAG sequence in DNA NOT gate then ACCTAG will not bind with the 
provided ACCTAG sequence, provided a “false” evaluation. The output of these two 
DNA NOT gates (TGGATC, TGGATC) will go through the DNA OR gate, then the 
“false” sequence will not combine with either of the “false” TGGATC sequences to 
produce a double-stranded sequence. DNase will destroy the “false” sequences and 
the gate will result in a “false” evaluation in the LUT output. 

If one input sequence A0 is “true” and the other A1 is “false”, then the “false” one 
will combine with the supplied “true” ACCTAG sequence in DNA NAND gate to pro-
duce a double-stranded molecule. DNase will destroy the remaining input sequence 
and the double-stranded sequence will generate a “true” ACCTAG sequence. This 
“true” sequence will go through DNA NOT gate and result in a “false” evaluation. 
A1 “false” sequence will go through DNA NOT gate and combine with the sup-
plied “true” ACCTAG sequence in DNA NOT gate then ACCTAG will bind with the 
provided ACCTAG sequence, representing a “true” evaluation. The output of these 
two DNA NOT gates (TGGATC, ACCTAG) will go through the DNA OR gate, then 
the “true” ACCTAG sequence will combine with the “false” TGGATC sequences 
to produce a double-stranded sequence. DNase will destroy the remaining “false” 
sequence and the gate will result in a “true” evaluation in the LUT output. 

Finally, if both of the input sequences are “true” (ACCTAG), then none will 
combine with the supplied “true” ACCTAG sequence in DNA NAND gate to produce 
a double-stranded molecule. DNase will destroy all sequences and generate a “false” 
sequence. This “false” sequence will go through DNA NOT gate and result in a “true” 
evaluation. A1 “true” sequence will go thought DNA NOT gate and combine with 
the supplied “true” ACCTAG sequence in DNA NOT gate then ACCTAG will not 
bind with the provided ACCTAG sequence, provided a “false” evaluation. The output 
of these two DNA NOT gates (ACCTAG, TGGATC) will go through the DNA OR 
gate, then the “false” sequence will not combine with either of the “false” TGGATC 
sequences to produce a double-stranded sequence. DNase will destroy the “false” 
sequences and the gate will result in a “true” evaluation in the LUT output.



7.5 DNA-Quantum Complex Programmable Devices 151

Two inputs, one is the output of LUT and another is clock input will go through the 
DNA D flip-flop. The DNA D flip-flop uses one DNA NOT gate and four DNA NAND 
gates. The DNA D flip-flop transfers the LUT output if the CLK input sequence is 
“true” (ACCTAG). If the CLK input is “false”, one of the inputs to each of the last 
two NAND gates will be “true”, thus the output of the D flip-flop remains unchanged 
regardless of the values of the LUT output. 

Outputs of the LUT and D flip-flop will be stored in a DNA cache memory. 
Trap Ione is used to transfer the DNA sequence into qubits. Two Quantum AND 
operations, one Quantum NOT operation, and one Quantum OR operation are used 
in 2-to-1 MUX. S. 0’ is created by applying the Quantum NOT operation for input S. 0. 
The NOT gate and LUT output will go through as inputs for the first Quantum AND 
operation. S. 0 and D flip-flop (DFF) output will go through as inputs for the second 
Quantum AND operation. The output of these two Quantum AND operations will 
go through the Quantum OR operation to generate the FPGA logical block output. 
Heat is supplied from outside to DNA circuit for operation. A heat transfer circuit 
is used in the quantum multiplexer circuit to transfer the extra heat produced by the 
Quantum circuit to the outside to cool it. 

7.5 DNA-Quantum Complex Programmable Devices 

CPLDs (complex programmable logic devices) are a type of integrated circuit used by 
application designers to construct digital hardware such as mobile phones. These can 
handle more design complexity than SPLDs (simple programmable logic devices), 
but they have less logic than FPGAs (field-programmable gate arrays). CPLDs have 
a large number of logic blocks, each with 8–16 macrocells. All of the macrocells in 
a logic block are fully linked because each logic block performs a specific function. 
These blocks may or may not be linked to one another, depending on the applica-
tion. In another way, CPLDs with quantum computers are playing an increasingly 
vital role in bioquantum computing, a field that combines quantum mechanics and 
biology to solve complex problems in areas like drug discovery and protein fold-
ing. These devices, particularly those utilizing qubits (quantum bits), allow for the 
manipulation and measurement of quantum particles, enabling new computational 
power for simulating and modeling biological systems. While promising, quantum 
computing and DNA computing are still in its early stages, and there are challenges 
in scaling up the number of qubits and DNA sequences, maintaining their coherence 
(the ability to maintain superposition and other properties), and developing efficient 
quantum algorithms and DNA algorithms. However, research and development are 
ongoing, with the potential to revolutionize fields like biology and medicine. In this 
section, the DNA-Quantum Complex Programmable Logic Device is discussed with 
the circuit diagram and working procedure.



152 7 Programmable Devices in DNA-Quantum Computing

Fig. 7.7 Circuit diagram of DNA part of DNA-quantum CPLD 

7.5.1 Circuit Architecture 

DNA-Quantum CPLD circuit is divided here into two blocks. One is the DNA part of 
the CPLD and another is the Quantum part of the CPLD. DNA part consists of DNA 
operation of logic function and Flip-flop. Here a simple part of the DNA CPLD as 
shown in Fig. 7.7 is designed by using a DNA D Flip-Flop and a DNA logic function. 
A simple DNA logic function consists of three DNA NAND, NOT, and two DNA 
OR operations. The output of the logic function will be XOR with zero. The output 
of the XOR will go through the DNA D Flip-Flop. The D Flip-Flop is a sequential 
circuit that consists of four DNA NAND operations and one DNA NOT operation. 
Heat is supplied from outside to DNA circuit for operation. Diagram of DNA part 
of DNA to Quantum CPLD is shown in Fig. 7.7.



7.5 DNA-Quantum Complex Programmable Devices 153

Fig. 7.8 Circuit diagram of quantum part of DNA-quantum CPLD 

Fig. 7.9 Block diagram of DNA-quantum CPLD 

Another part of the DNA-Quantum CPLD circuit is Quantum CPLD part. Quan-
tum part consists of Quantum operation of Multiplexer. Here a simple Quantum 
CPLD part as shown in Fig. 7.8 is designed by using a Quantum Multiplexer. A sim-
ple 2-to-1 Quantum multiplexer consists of two Quantum AND and one Quantum 
OR operations. 

DNA-Quantum CPLD functional block is designed by connecting the DNA circuit 
and Quantum circuit. A simple DNA to Quantum CPLD functional block as shown 
in Fig. 7.9 is designed by using DNA block and Quantum block. 

The outputs of the DNA block will be stored in a DNA cache memory. Trap Ione 
is used to transfer the DNA sequence into qubit. Heat is supplied from outside to the 
DNA circuit for operation. A heat transfer circuit is used in the quantum multiplexer



154 7 Programmable Devices in DNA-Quantum Computing

Fig. 7.10 Circuit architecture of DNA-quantum CPLD 

circuit to transfer the extra heat produced by the quantum circuit to the outside to cool 
it. The whole circuit architecture of DNA-Quantum CPLD is depicted in Fig. 7.10.



7.6 Summary 155

7.5.2 Working Principle 

Three inputs A, B, and C first go through the logic block. The logic function is 
then implemented using three DNA AND operations and two DNA OR opera-
tions. Outputs of the logic function will go through the Quantum XOR (XOR with 
TGGATC) operation and produce the output. If all the three input sequences are 
“false” (TGGATC), then all the inputs will go through three DNA NAND oper-
ations and combine with the supplied “true” ACCTAG sequence in DNA NAND 
operation to produce a double-stranded molecule. DNase will destroy the remaining 
input sequence and the double-stranded sequence will generate a “true” ACCTAG 
sequence. These “true” sequences will go through DNA NOT operation and result 
in a “false” evaluation. The output of these three DNA NOT gates will go through 
the DNA OR operation. DNase will destroy the “false” sequence and the operation 
will result in a “false” evaluation in the logic function output. The output of the logic 
function will XOR with zero. 

Two inputs, one is the output of XOR and another is the clock input will go through 
the DNA D flip-flop. The DNA D flip-flop uses one DNA NOT operation and four 
DNA NAND operations. The DNA D flip-flop transfers it to the DNA XOR output, 
if the CLK input sequence is ACCTAG. If the CLK input is TGGATC, one of the 
inputs to each of the last two quantum NAND operations will be ACCTAG. Thus, 
the output of the D flip-flop remains unchanged regardless of the values of the XOR 
output. 

The output of the logic function and DNA D flip-flop will be stored in a DNA cache 
memory. Trap Ion is used to transfer the DNA sequence into qubits. Two Quantum 
AND operation, one Quantum NOT operation, and one Quantum OR operation are 
used in 2-to-1 MUX. S. 0’ (Complement of S. 0) is created by applying the Quantum 
NOT operation for input S. 0. The NOT gate and XOR will go through as inputs for 
the first Quantum AND operation. S. 0 and D flip-flop (DFF) output will go through 
as inputs for the second Quantum AND operation. The output of these two Quantum 
AND operations will go through the Quantum OR operation to generate the qubits 
of the CPLD functional block output. 

7.6 Summary 

This chapter has presented programmable logic devices in DNA-Quantum computing 
where the PLD circuits consist of the DNA operations and quantum operations. DNA 
operations on the first part and the quantum part will be on the last part of the PLD 
circuit. All necessary circuits and descriptions of the DNA-Quantum PLD have been 
presented clearly in this chapter. Here, DNA circuits are in the first part, where the 
extra heat is provided from the external source. On the other hand, the quantum part 
produces extra heat which is needed to be connected to a cooler to consume. The 
excessive heat could destroy the whole circuit.



Part III 
Nano-Processor in Quantum Biocomputing 

Overview 

The quantum world is a domain where the smallest atoms and particles may exist. The 
size is less than 100 nanometers. This is where the foundations of quantum computers 
are constructed, which are based on two primary principles: superposition and entan-
glement. And it is because of these factors that quantum computers are so amazing, 
effective, powerful, and distinct from traditional computers. Biochemistry and molec-
ular elements are employed to achieve computer tasks formerly accomplished by 
standard silicon-based technology in DNA computing, which is a new sector of 
study. DNA computing simulates logic gates and Boolean circuits at the molecular 
level. A DNA computer consists of DNA-based logic gates, a crucial component 
of a DNA computer. DNA computing nanoprocessor integrates all the components 
of DNA computing into one machine. An integrated DNA nanoprocessor can be 
constructed, mimicking the traditional silicon-based computer processor. And this 
proposed DNA nanoprocessor is also capable of performing computations logically. 
All types of problems of a DNA computer are encoded using the DNA alphabet 
A, C, T, and G. The fundamental motto of this nanoprocessor is to enhance the 
system’s performance. Quantum biology (QB) is a combinational field of quantum 
physics and molecular biology, which has drawn researchers’ attention to discover 
new world as their features are similar. It is now an emerging field to research. A 
hybrid nanoprocessor that contains both quantum physics and biology properties with 
similar features of quantum physics and life science. In other way, nanoprocessors 
play a role in quantum biocomputing by facilitating the creation of efficient quantum 
light sources and single-photon emitters, which are essential for quantum photonics. 
They can also be used to build networks of nanobased channels for protein filament 
traffic, offering a potential alternative to traditional quantum computers. In this part, 
firstly, a quantum nanoprocessor and a DNA nanoprocessor will be shown, then 
a complete hybrid quantum-DNA and DNA-quantum nanoprocessor will be shown



158 Part III: Nano-Processor in Quantum Biocomputing

with NMR-NMR relaxation in zero kelvin temperature with proper explanation. As it 
is a loamy nanoprocessor, the system needs to convert qubit to DNA form and DNA to 
qubit form. Here two methods will be needed to complete it. One is NMR relaxation 
that converts qubit to the DNA sequence, and another is only NMR that converts DNA 
to the qubit. In addition, a source is used to supply heat that aids DNA sequences 
in making chemical reactions. Finally, a heat transfer circuit is used to pass heat 
from the quantum components to the outside. So, this part will describe the details 
of nanoprocessor in quantum biocomputing, which means quantum nanoprocessor, 
quantum-DNA nanoprocessor, and DNA-quantum nanoprocessor.



Chapter 8 
Quantum Nanoprocessor 

8.1 Introduction 

Richard Feynman, a physicist, claimed in the 1970s that computers could imitate 
physics. He was the first to discover nanotechnology, which involves manipulating 
individual atoms and molecules to create complex atomic structures. Quantum nan-
otechnology is the term for the technology used to control individual states. However, 
Eric Drexler delivered the first course on nanotechnology in 1988; he hypothesized 
the concept of nanoscale, whereas Drexler and Merkle created a molecular machine 
technique for computing the energy and structure of static systems with no direct 
knowledge on their dynamics. 

Several researchers’ groups have been trying to simulate components of nanoma-
chines for the last many years. And, in 1994, Peter Shor discovered an algorithm 
that is known as Shor’s algorithm; this algorithm is capable of factoring a number 
N in O ((logN) 3) time and O (logN) space. In 2001, a group demonstrated this 
algorithm at IBM, which factored 15 into 3 and 5. They used a quantum computer 
with seven qubits to implement this. A seven-qubit register was implemented using 
Shor’s algorithm. 

Afterward, Cirac and Zoller proposed a physical system for atomic ions whose 
electronic states store quantum information. The single-trapped ion can carry 
the quantum information, which is manipulated. Finally, David Wineland’s group 
demonstrated an ion-trapped quantum computer at the National Institute of Standard 
Technology. Quantum information or a qubit can be implemented using a two-level 
system; the first is the electron’s spin in a magnetic field, and the other is to use 
two levels of an atom. The qubit is initialized and manipulated for single-qubit 
gates, two-qubit gates, qubit state preparation, and readout which have been imple-
mented with the fidelity needed for fault-tolerant Quantum Computing (QC) using 
high threshold quantum error correction codes. However, despite performing many 
promises shown by trapped ions, many challenges still need to be addressed to make 
a functional quantum computer. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9_8 

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5349-9_8&domain=pdf
https://doi.org/10.1007/978-981-97-5349-9_8
https://doi.org/10.1007/978-981-97-5349-9_8
https://doi.org/10.1007/978-981-97-5349-9_8
https://doi.org/10.1007/978-981-97-5349-9_8
https://doi.org/10.1007/978-981-97-5349-9_8
https://doi.org/10.1007/978-981-97-5349-9_8
https://doi.org/10.1007/978-981-97-5349-9_8
https://doi.org/10.1007/978-981-97-5349-9_8
https://doi.org/10.1007/978-981-97-5349-9_8
https://doi.org/10.1007/978-981-97-5349-9_8
https://doi.org/10.1007/978-981-97-5349-9_8


160 8 Quantum Nanoprocessor

However, in 2000, DiVincenzo showed five critical criteria needed to make a 
helpful quantum processor. The five criteria are (1) A physical system containing 
well-characterized qubits. (2) The system’s ability must be well defined and deter-
mined. (3) Qubit decoherence times are much longer than any gate times. (4) A 
gaggle of universal quantum gates can be possible to apply to every qubit. (5) The 
ability to read out the qubit state has to be with accuracy. Only trapped ions fulfill 
the property mentioned above. This broader term “Nano” encompasses computing 
at the nanoscale, including quantum nanoprocessors and other nanoscale technolo-
gies. Quantum nanoprocessors, also known as quantum processing units (QPUs), 
are the brains of quantum computers that leverage quantum mechanical principles at 
the nanoscale to perform calculations differently from traditional processors. These 
nanoprocessors use the properties of particles like electrons or photons to perform cal-
culations, potentially offering speed advantages for specific tasks. Quantum nanopro-
cessors could potentially solve certain complex problems much faster than classical 
computers, especially those involving optimization or simulation. These processors 
have the potential to impact fields like drug discovery, materials science, and arti-
ficial intelligence. The current stage of quantum computing is known as the noisy 
intermediate-scale quantum (NISQ) era, where processors have a limited number 
of qubits and are not yet fully fault-tolerant. Researchers are actively working to 
overcome these challenges and advance the technology towards a fully functional 
quantum computer. In this chapter, a nanoprocessor is built differently, and in a later 
chapter, a nanoprocessor will be built using trapped ions that follow the criteria 
mentioned earlier. 

8.2 Basic Definitions 

A Central Processing Unit is known as the central processor or main processor. A 
quantum electronic circuit within a quantum computer can execute the input/output 
operations. Basic arithmetic and logical units carry out the instructions of the com-
puter program. The CPU controls all kinds of data flow and instructions. However, 
the CPU consists of five core components such as: 

1. Quantum Control unit (CU) 
2. Quantum Register 
3. Quantum Arithmetic logic unit (ALU) 
4. Quantum RAM 
5. Quantum Buses. 

1. Quantum Control Unit: A control unit is a quantum circuit that gives instructions 
within a computer processor. The control unit consists of many selection circuits 
like multiplexers and decoders. 

2. Quantum Register: A nanoprocessor register is the most miniature set of qubit 
data that can hold the places part of a quantum nanoprocessor. For example, a 
register can have a qubit sequence, instructions, and a storage address.



8.3 Block Diagram of a Complete Quantum Nanoprocessor 161

3. Quantum Arithmetic Logic Unit: At first, Oskin et al. presented ALU as an 
element in a quantum computer architecture. The arithmetic unit controls the 
arithmetic operations that are executed by the program. The ALU unit performs 
mathematical functions such as subtract, divide, and multiply. 

4. Quantum RAM: RAM stands for “Random Access Memory,” called volatile 
memory. It is one of the CPU components that helps to increase system per-
formance. The main goal of RAM is to store and access data on a short-term 
basis. 

5. Quantum Buses: All computers need buses, whether they are quantum comput-
ers, supercomputers, or classical computers; they are used for transferring data 
between processors and other components. That is why the quantum nanopro-
cessor used in quantum computers will have been described here, where buses 
will be used like other computers. There are three types of buses such as address 
bus, control bus, and data bus which are briefly described in the architecture of 
essential components. 

8.3 Block Diagram of a Complete Quantum Nanoprocessor 

CPU (Central Processing Unit) is the heart of a computer that manipulates data and 
executes instructions. It consists of a lot of complete circuits such as IR (instruction 
register), PC (Program counter), Multiplexer, ALU (arithmetic logic unit), and RAM 
(Random Access Memory). All circuits are made of quantum logic gates as a quantum 
nanoprocessor. As quantum circuits produce heat that can create anarchy, it is required 
to solve it. As a result, a heat transfer circuit is shown in the following figure that will 
eradicate heat from the nanoprocessor to the outside environment, and a refrigerator 
will cool down this heat. A complete nanoprocessor block diagram is given in Fig. 8.1. 
This figure (Fig. 8.1) is the complete two-qubit quantum nanoprocessor where only 
essential CPU components are shown. CPUs need to have two inputs: instruction and 
data for performing meaningful work. The task of the instruction register is to tell the 
CPU what actions need to be performed on the data. Instructions are represented using 
a qubit. The CPU’s inputs are stored in the memory. In Fig. 8.1, it is seen that the RAM 
data is coming from memory to the instruction register, and the CPU functions are 
following a cycle of fetching an instruction. After fetching, it is decoded, and finally, 
it is executed. This process can be called the “fetch decode execute” cycle. The cycle 
starts when data is transferred from memory to the instruction register. Note that the 
information sent from memory always uses the data bus for transferring data. The 
unique qubit patterns are extracted by selecting machine language in the IR and sent 
to the decoder. The purpose of the decoder is to decode the coded information from 
one format to another format. The second step of the cycle starts to work because of 
decoder. The decoder represents which qubit pattern will operate and activate that 
circuits needed to perform the actual operation. The course will follow the following 
instructions if the process is thoroughly accomplished.



162 8 Quantum Nanoprocessor

Fig. 8.1 Quantum nanoprocessor 

The quantum program counter (PC) is a special-purpose register that holds the 
address of the next instruction to be executed from memory known to the CPU. If 
an instruction is completed, the program counter is incremented by one memory 
location. This theme is the whole working procedure of this nanoprocessor. Notice 
that a heat transfer circuit has been used as the quantum circuit produces so much 
heat, creating chaos within the circuit. That is why this heat has been transferred 
from the circuit to cool it by using a quantum refrigerator.



8.4 Basic Components of Quantum Nanoprocessor 163

8.4 Basic Components of Quantum Nanoprocessor 

A complete nanoprocessor has been made using the following components shown 
in Fig. 8.1. The features of this CPU are as follows: 

1. Quantum RAM 
2. Quantum Instruction Register 
3. Quantum Program Counter 
4. Quantum Incrementor 
5. Quantum decoder 
6. Quantum Multiplexer 
7. Quantum ALU 
8. Quantum Accumulator. 

Moreover, the buses are used in the CPU to transfer data from one component to 
another. There are three types of buses: Data bus, Address bus, and control bus. 
The data bus is bidirectional, which carries the data back and forth between CPU 
and RAM. The address bus is unidirectional, taking memory addresses from the 
nanoprocessor to other components like primary storage and input/output devices. 
And, the last bus is a control bus used to transfer nanoprocessors to other elements 
that make sure everything is flowing perfectly from place to place or not. These are 
also essential components of the CPU that need to be accomplished for meaningful 
work. 

However, all components are explained in detail in this section. 

8.4.1 Design Procedure of Quantum RAM 

It requires two address lines with one ancilla qubit for simulating 4-to-2-qubit RAM, 
and each address line needs to be CNOT form as well. These address line combina-
tions will be the input of 2-to-4 decoders which consists of four quantum AND gates, 
and this decoder has one enable input. So getting four select lines from this decoder, 
and each select line will go through each RAM cell. Note that word calculation of 
RAM will be . 2k , where . k is the address line and .2k is the total words of . n bit, and 
decoder combination will be .k × 2k . This two-qubit RAM consists of four separate 
RAM cells, and each cell has three inputs such as |In0.> or |In1. >, anyone selects 
a line and read/write inputs. The obtained output from 4 quantum RAM cells will 
be the input of a quantum OR gate, which produces the final result. This part is the 
whole design procedure of 4-to-2 qubit RAM.



164 8 Quantum Nanoprocessor

8.4.1.1 Working Principle of Quantum RAM 

This component is the most crucial element of the CPU that stores the data quickly, 
a primary and volatile memory. The circuit of 4-to-2 qubit quantum RAM is given 
in Fig. 8.2. 

This Fig. 8.2 represents the implementation of 4-to-2 qubit RAM. This quantum 
RAM consists of four separate “Words” of memory, and each is 2 qubits wide. 
The quantum RAM Cell has three inputs and one output. The complete circuit of a 
quantum RAM cell is described in Fig. 8.3 with proper explanation. A word consists 
of two quantum RAM cells arranged in such a way that both qubits can be accessed 
simultaneously. Four words of memory need two address lines. |A0.> and |A1.> are 
the two-qubit address lines input that goes through a 2-to-4 decoder that selects one 
of the four words. The memory-enabled input enables the decoder. If the memory 
enable is |0. >, all output of the decoder will be |0. >, and in that case, none of the 
memory addresses will be selected. But when the memory enable is |1. >, one of the 
four words is preferred. The value specifies the word in the two address lines. The 
read/write input determines the operation when a word has been selected. During the 
read operation, the four qubits of the selected word pass to the quantum OR gates 
to the output |Z0.> and |Z1.> terminals. However, during the write operation, the 
data available in the input lines are transferred into the four quantum cells of the 
selected word. The quantum RAM cells that are not selected become disabled, and 
their previous qubit never changes. But when the memory-enabled input that passes 
into the decoder is equal to |0. >, none of the words are selected, and then all quantum 
cells remain unchanged regardless of the value of the read/write input. This is the 
working procedure of RAM. The quantum RAM cell is given below in Fig. 8.3. 
The quantum RAM cell has been designed using an R-S flip-flop. The number of 
total quantum cells per word will be .m × n, where .m represents words with n bits. 
The quantum cell has three inputs such as “Select,” “Read/Write,” and “Input,” and 
one output line that is labeled by “Output.” The “select” input is used to access either 
reading or writing. The cell performs the memory operation when the select line is 
high or |1. >. But when the select line of the quantum cell is low or |0. >, the cell is 
not interested in completing a read from or written to. 
The following input is “Read/Write,” where a system clock will conduct this input. 
If the clock value on the read/write line is |0. >, this will signify “read,” and when it 
is |1. >, it will perform the “write” phase. Consider the cell that has been selected. 
In that case, if the clock value is |0. >, then the cell contents are to be read, and 
this time the output value will depend only on the Q value of the flip flop. But if 
Q is low, the cell output will be |0. >, and if Q is high, the cell output will be|1. >. 
It occurs because the quantum AND gate added to the cell’s production has three 
inputs-negated read/write, select, and Q; and both “negated read/ write” and “select 
are currently high.



8.4 Basic Components of Quantum Nanoprocessor 165

Fig. 8.2 4-to-2 qubits quantum RAM



166 8 Quantum Nanoprocessor

Fig. 8.3 Quantum RAM cell 

8.4.2 Design Procedure of Quantum Instruction Register 

The quantum instruction register (IR) consists of 16 quantum AND operations shown 
in Fig. 8.4. As this instruction is a component of a two-qubit CPU, instructions will 
be.22 = 4. The minimum four instructions can be defined LOAD A, LOAD B, ADD 
A B, and OUT. An instruction register is a special-purpose register mainly used to 
store the instructions executed by the quantum computer. 

8.4.2.1 Working Principle of Quantum Instruction Register 

An instruction register holds that instruction is currently being executed. The quan-
tum IR stores the instruction word. When the CPU fetches any instruction from 
memory, it is temporarily stored in the instruction register. The instruction can be a 
qubit word or code that defines a specific operation to be performed. After that, the 
CPU decodes the instruction and then executes it.



8.4 Basic Components of Quantum Nanoprocessor 167

Fig. 8.4 4-qubit instruction register 

8.4.3 Design Procedure of Quantum Program Counter 

The quantum program counter (PC) consists of two D flip-flops where the first D 
flip-flop is designed using four NAND gates shown in Fig. 8.5 using green color 
boxes. This D flip-flop generates two outputs where one output has been skipped 
as there is no need to show it, according to Fig. 8.5. Another D flip flop consists of



168 8 Quantum Nanoprocessor

Fig. 8.5 2-qubit program counter register 

four NAND gates confined to a violet color box. This D flip-flop also generates two 
outputs. Figure 8.5 shows that only two outputs that act as inputs are needed. So, 
the rest of the two outputs have been skipped. This two-qubit program counter is 
applicable for two-qubit nanoprocessors. The circuit is shown in Fig. 8.5. 

8.4.3.1 Working Principle of Quantum Program Counter 

Using this program counter is to store the next instruction executed next. The pro-
gram counter is incremented by one when the current instruction is completed. All 
instructions and data have a specific address in memory. For example, if a program 
begins with an instruction stored in memory location 2, the program counter will first 
be loaded with address 2. When this instruction is executed, the PC is incremented 
by one to the following address, i.e., 3. The instructions in a program always follow 
the sequence memory location for storing themselves. Here |D0.> and |D1.> present 
inputs that go through the D flip-flop and give the desired outputs |Q0.> and |Q1. >. 

8.4.4 Design Procedure of Quantum Incrementer Circuit 

The quantum incrementer circuit is shown in Fig. 8.6.



8.4 Basic Components of Quantum Nanoprocessor 169

Fig. 8.6 2-qubit quantum incrementer 

This circuit has been designed using two quantum half-adders. Each half-adder 
consists of one quantum XOR gate and one quantum AND gate. The quantum XOR 
gate gives the sum result, and the quantum AND gate generates the carry-out. 

8.4.4.1 Working Principle of Quantum Incrementer Circuit 

The program counter holds that the address will be executed next. When an instruction 
is completed, it needs to be incremented by one. That is why a two-qubit Incrementer 
circuit is used here, where one qubit value is added to the value of quantum variables 
stored in a register. The least significant qubit of the half adder is given |1.> as a 
constant direct input and |A0.> as the second input. So, |A0.> and |A1.> are the total 
qubits of half-adder where |1.> is added, and produce the incremented outputs |Y0. >
and |Y1. >. 

8.4.5 Design Procedure of Quantum Decoder 

The 2-to-4 decoder is used in a two-qubit CPU. The 2-to-4 qubit quantum decoder 
consists of four quantum AND operations with one enabled input. |A0.> and |A1. >
are inputs with CNOT form and without CNOT form; |D0. >, |D1. >, |D2. >, and |D3. >
are outputs. Figure 8.7 shows the circuit architecture of the quantum 2-to-4 decoder. 

8.4.5.1 Working Principle of Quantum Decoder 

The decoder is a combinational quantum circuit that has n input lines and can produce 
.2n output lines. Each output has one product, and to achieve this product, quantum 
AND operations are performed here. For example, the minterm of two-input qubits 
|A0.> and |A1.> when enable input is |1. >. But if enable input is |0. >, all the decoder



170 8 Quantum Nanoprocessor

Fig. 8.7 Quantum 2-to-4 decoder circuit 

outputs will be equal to zero and when enable is |1. >, one of these four outputs will 
be active, i.e., |1. >. 

8.4.6 Design Procedure of Quantum Multiplexer 

4-to-1 quantum MUX is shown in Fig. 8.8. A 4-to-1 MUX (multiplexer) consists of 
four data inputs lines as |D0.> to |D3. >, two select lines-|S0.> and |S1.> and a single 
output line. There are many ways to draw 4-to-1 MUX, but here designing the 4-to-1 
MUX using three 2-to-1 MUX. 

The calculation of mux will be.2n-to-1 MUX requires.(2n − 1) 2-to-1 MUX. The 
select lines |S0.> and |S1.> select any four input lines to connect the output lines.



8.4 Basic Components of Quantum Nanoprocessor 171

Fig. 8.8 4-to-1 quantum MUX 

8.4.6.1 Working Principle of Quantum Multiplexer 

The multiplexer has multiple inputs and a single output. Each 2-to-1 MUX consists 
of two quantum AND operations. The obtained production from two quantum AND 
gates will be the input of a quantum OR gate. Yield two outputs with the least 
significant qubits from 2-to-1 MUX, and these two outputs are propagated. In such 
a way, the outputs are achieved. 

8.4.7 Design Procedure of Quantum ALU 

This is the two-qubit ALU which consists of 16 quantum AND operations selected 
by 2-to-4 quantum decoders. According to the 2-to-4 quantum decoder, only one 
logical operation is performed: addition, multiplier, subtractor, or divider. Two-qubit 
quantum ALU operation circuit is shown in Fig. 8.9. 
Every logical operation like addition and subtraction is executed with the help of a 
decoder. Each logical operation is described as follows.



172 8 Quantum Nanoprocessor

Fig. 8.9 2-qubit quantum ALU operation



8.4 Basic Components of Quantum Nanoprocessor 173

Fig. 8.10 Quantum adder operation 

• Quantum Adder 

This adder consists of quantum X-OR, AND, and OR operations used to perform 
addition. Figure 8.10 represents the diagram of the quantum adder. 
According to Fig. 8.10, the first adder produces a sum, and Cout will be the Cin of 
the next adder. And this full adder finally has a second output and a Cout. 

• Quantum Subtractor 

This subtractor consists of a quantum full subtractor used to perform subtraction. 
Figure 8.11 shows the quantum subtractor circuit. 
A full subtractor is such a combinational quantum circuit that can perform subtraction 
of two qubits where |A.> and |B.> are control bits, |Bin.> is the borrow input and 
output is the difference D, and Bout is the borrow out. Here |A. >, |B.> indicates



174 8 Quantum Nanoprocessor

Fig. 8.11 Quantum subtractor operation 

respectively minuend and subtrahend and |0.> is considered a target qubit which is 
constant here. According to Fig. 8.11, the first full subtractor produces a difference, 
and Bout will be the Bin of the next full subtractor. And this full subtractor finally 
has a second output and a Bout. 

• Quantum Multiplier 

For a two-qubit quantum multiplier, two quantum digits are required. In a two-bit 
multiplier, four quantum AND gates and two half-adders are required to design the 
main circuit. Here, the AND gates will perform the multiplication and half-adders 
will add the partial product terms or carry. The circuit of the quantum multiplier is 
given in Fig. 8.12. 
At first, it is required to perform quantum AND operations. Let |A.1>, |A.0> and 
|B.1>, |B.0> be the quantum digits where |A.1>, |A.0> is the multiplicand and |B.1>, 
|B.0> is the multiplier. As it is a quantum circuit, |1.> is assumed as a constant qubit 
which acts as a target qubit. In this circuit, the quantum AND gate will perform



8.4 Basic Components of Quantum Nanoprocessor 175

Fig. 8.12 Quantum multiplier operation 

the quantum multiplication and the quantum half-adders will add the partial product 
terms. By doing these logical operations, it is easy to get a four-qubit output. 

• Quantum Divider 

For a two-qubit quantum divider, firstly there needs a quantum AND logical oper-
ation. In this AND operation, three inputs have been used. To avoid dilution, the 
third input of at first AND gate again has been connected with the second AND gate 
operations which helps us to get the output of AND operations using three inputs. It 
is the two-qubit divider as shown in Fig. 8.13. 
First of all, in this circuit, four quantum AND operations are used where three inputs 
have been used. To avoid dilution of the circuit, the third input of the first AND gate 
again has been connected with the second AND gate which helps to get the output of 
AND operations using three inputs. Then the output of the quantum AND gate has to



176 8 Quantum Nanoprocessor

Fig. 8.13 Quantum divider operation 

connect with OR gate as input for getting the exact output of |Y.1>. The constant |1. >
is used to get the exact output of AND gate which works as a target qubit and it is the 
basic properties of the quantum logic circuit. This circuit has been completed using a 
two-qubit divisor and two-qubit divisible which produce maximum two-qubit output. 
Let |A.0> and |A.1> be respectively, |1. > and |0. > and, |B.0> and |B.1> be respectively 
|1.> and |1.> where |A.0>|A.1> is divisor and |B.0>|B.1> is dividend. Now, if |1. >|1. >
is dividend by divisor |1. >|0. >, the Quotient, respectively, 0 at |Y.0> and 1 at |Y. 1>

which works according to the following circuit. This is the basic working principle 
of the two-qubit quantum divider. 

8.4.7.1 Working Principle of Quantum ALU 

An arithmetic logic unit performs arithmetic and logic operations such as addition, 
subtraction, multiplication, and division. All information in a computer is stored and 
converted either |0.> or |1. >. Open-switch and closed-switch concepts are used here.



8.5 Applications 177

An available transistor is a device in which no current passes through, represented by 
|0. >. On the other hand, a closed transistor is a device in which current passes through, 
represented by |1. >. Multiple transistors are connected to accomplish operations. For 
example, one transistor can be connected to the second one and turn the transistor’s 
switch on or off based on the state of the second transistor. This is called a quantum 
gate operation that can allow the flow of current. 

8.4.8 Design Procedure of Quantum Accumulator 

The two-qubit accumulator consists of one quantum AND gate and two D flip-flops, 
where each D flip-flop is made of four NAND gates. | LOAD.> and |Clk.> are the 
inputs of the quantum AND gate, and the obtained output from AND gate will be the 
input of each D flip-flop. After logical execution, the first and second outputs from 
the first and second D flip-flops are obtained. The two-qubit quantum accumulator 
is shown in Fig. 8.14. 

8.4.8.1 Working Principle of Quantum Accumulator 

An accumulator is a register that acts as a temporary storage location and holds 
an intermediate value in mathematical and logical operations. For example, in the 
process “2+3+4”, the accumulator will have the first value 2, then the value 5, and 
finally the value is 9. The data will be stored in the accumulator when the quantum 
AND gate’s output is |1. >. And if the quantum AND’s output is |0. > then no data will 
be stored in the accumulator. 

8.5 Applications 

It has already been shown that quantum computing solves several problems using 
many algorithms. The most well-known quantum algorithms are Shor’s integer fac-
toring algorithms and Grover’s database search algorithm. It is also applied to error 
correction, Fourier transforms, and new methods such as quantum key exchange and 
quantum teleportation can transfer the state from one location to another. In 1994, 
Peter Shor discovered an algorithm to factor a large integer in polynomial time. He 
showed that it is possible to break the RSA cryptosystem using this algorithm. This 
algorithm can give the correct answer with high probability, and the other one can 
reduce the chance of failure repeating the algorithm. Another the most critical algo-
rithm is Grover’s algorithm. This algorithm has been designed for searching unsorted 
databases. For searching an unsorted array of size. N , it needs O (.

√
N ) operations. In 

classical algorithms, it requires .O(N ). This algorithm may be more accurate when 
it is an inverting function. It can also be used for estimating the median and mean



178 8 Quantum Nanoprocessor

of a set of numbers, and it is also possible to solve the collision problem. It can 
determine the connectivity of an .n-vertex graph using O (3/2). One of the most sig-
nificant advantages is that it can perform parallel computations, improving system 
performance. The .2n inputs can be easily stored in . n qubits using the Superposition 
state. The. n qubits can be used as the input for a quantum circuit that performs arbi-
trary computations. Moreover, it can be used in artificial intelligence and machine 
learning, computational chemistry, drug design and development, cybersecurity and 
cryptography, and weather forecasting. 

Fig. 8.14 2-qubit quantum accumulator



8.6 Summary 179

8.6 Summary 

This chapter has tried to give possible architectural approaches for making the 
quantum nanoprocessor. This chapter explores specific architectural designs for 
quantum nanoprocessors that can achieve high performance. Then, individual quan-
tum circuits for two-qubit CPUs with their design procedures and working principles 
are demonstrated. The design of all components of a quantum ALU is also discussed. 
All these ideas have been implemented theoretically. Finally, applications of this 
quantum nanoprocessor are also shown here.



Chapter 9 
Quantum-DNA Nanoprocessor 

9.1 Introduction 

Quantum theory is a fundamental theory that describes the nature and behavior of 
matter and energy on the atomic and subatomic levels. Neils Bohr and Max Planck 
are the fathers of quantum theory, and both received Nobel prizes in Physics for 
their work on quanta. Einstein is the third founder of quantum theory who described 
light as quanta in his theory of the photoelectric effect and also won the Nobel prize 
in 1921. Biology, on the other hand, is a discipline of science concerned with the 
study of living creatures and their vital processes. This area is concerned with all ele-
ments of life that are physicochemical. All living systems are made up of molecules, 
and quantum mechanics can describe all molecules. Therefore, it is clear that quan-
tum theory must play an essential role in biology because of having organisms. 
Over the last decades, scientists have been trying to merge quantum and biology. 
Recent research has shown us that phenomena such as photosynthesis, respiration, 
and how people think are all influenced by quantum mechanics. Quantum biology is 
a field where quantum mechanics and theoretical chemistry are described to biolog-
ical objects and problems. Quantum biology may be used for computations, and it 
is concerned with the influence of non-trivial quantum phenomena. Quantum biol-
ogy was firstly discussed by Erwin Schrodinger. In 1994, he debated applications 
of quantum mechanics in biology in his book named “What is Life?” However, in 
1963 proton tunneling was published by Per-Olov Lowdin as another mechanism for 
DNA mutation. And, in his paper, he discovered “quantum biology” as a new field. 
Recently, many researchers have shown that DNA molecules have the property of 
coherence. They are also capable of having superposition, entanglement, and tun-
neling. As quantum physics and life science characteristics are identical, a hybrid 
nanoprocessor is proposed using DNA molecules sequence and quantum bit. This 
chapter emphasizes how a qubit is converted into a DNA molecule sequence. To con-
vert a qubit into a DNA sequence, NMR relaxation is used. NMR relaxation is when 
an exciting magnetic state returns to its equilibrium distribution. When a molecule 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9_9 

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5349-9_9&domain=pdf
https://doi.org/10.1007/978-981-97-5349-9_9
https://doi.org/10.1007/978-981-97-5349-9_9
https://doi.org/10.1007/978-981-97-5349-9_9
https://doi.org/10.1007/978-981-97-5349-9_9
https://doi.org/10.1007/978-981-97-5349-9_9
https://doi.org/10.1007/978-981-97-5349-9_9
https://doi.org/10.1007/978-981-97-5349-9_9
https://doi.org/10.1007/978-981-97-5349-9_9
https://doi.org/10.1007/978-981-97-5349-9_9
https://doi.org/10.1007/978-981-97-5349-9_9
https://doi.org/10.1007/978-981-97-5349-9_9


182 9 Quantum-DNA Nanoprocessor

drops into the NMR probe as a sample, it goes to an excited state with the help of a 
magnetic field. When the electromagnetic resonance doesn’t emit, the magnetic field 
becomes weak. In that case, the superposition state molecule loses its energy and 
comes into the ground state. This whole process is known as NMR relaxation. This 
process is executed at room temperature. In other way, quantum biological comput-
ing and nanoprocessors explore the intersection of quantum mechanics, biology, and 
nanoscale technology to develop novel computing paradigms. It combines the power 
of quantum entanglement and superposition with biological systems and nanotech-
nology to create advanced computational tools. It use the theme of quantum biology 
that investigates how quantum phenomena influence biological processes, such as 
enzyme catalysis and sensory perception. It aims to leverage quantum mechanical 
principles in biological systems for computation. So, this chapter will describe the 
quantum-DNA nanoprocessor. 

9.2 Basic Definitions 

A quantum-DNA nanoprocessor is a hybrid circuit that can execute all logical instruc-
tions on the quantum qubit as well as DNA molecule size programming. It can also 
handle any kind of logical problems and logical units that carry out the computer 
program’s instruction. The quantum-DNA nanoprocessor controls all types of data 
flow and instructions. Inputs are fed into a qubit form in each component, and out-
put is achieved in DNA molecule form. However, The CPU consists of five core 
components are given as follows: 

1. Control Unit (CU) 
2. Register 
3. Arithmetic Logic Unit (ALU) 
4. RAM 
5. Buses. 

1. Control unit: The control unit is the main component of a nanoprocessor in a 
computer that directs the operation of the nanoprocessor. The primary function 
is to fetch and execute instructions from the main memory. 

2. Register: Registers are one kind of memory to accept, store, and transfer data 
and instructions which are used immediately by the nanoprocessor. The main 
function is to hold an instruction, a storage address, or any data. The register 
mainly containing the memory location will be used to calculate the address of 
the next instruction when the current instruction is completed. 

3. Arithmetic logic unit: In computing, an arithmetic logic unit is a combinational 
DNA circuit that handles all the calculations the nanoprocessor may need. It 
performs all types of arithmetic operations like addition, subtraction, and division. 

4. RAM: RAM stands for “Random Access Memory,” called volatile memory. It is 
one of the components that contain information as a DNA sequence or qubit, and



9.3 Block Diagram of Quantum-DNA Nanoprocessor 183

the nanoprocessor can read or write to those sequences or qubits as information 
depending on whether the READ or WRITE line is signaled. The main goal of 
RAM is to store and access data on a short-term basis. 

5. Buses: Buses are high-speed internal connections used to send control signals 
and data between the nanoprocessor and other components of the quantum-DNA 
computers. All computers need buses, whether they are DNA computers, quantum 
computers, supercomputers, or classical computers; and these buses are used for 
transferring data between processors and other components. That is why The DNA 
nanoprocessor used in DNA computers will have been described here, where buses 
will be used like other computers. There are three types of buses—address bus, 
control bus, and data bus which are briefly described in the architecture of basic 
components. 

9.3 Block Diagram of Quantum-DNA Nanoprocessor 

The CPU (Central processing unit) is the computer’s brain, which manipulates data 
and performs all the basic arithmetic and logical operations. It contains many quan-
tum combinational circuits such as IR (instruction register), PC (Program counter), 
Multiplexer, ALU (arithmetic logic unit), and RAM (Random access Memory). A 
source is applied here to provide heat that helps DNA molecules perform a chemical 
reaction. In addition, a heat transfer circuit is shown here to transfer quantum heat 
to the DNA CPU. In this section, a quantum-DNA nanoprocessor is presented that 
consists of the components mentioned above. 

Figure 9.1 shows the complete Quantum-DNA nanoprocessor. There are two 
inputs which are in CPUs to accomplish meaningful work instruction and data. The 
task of the instruction register is to tell the CPU what actions need to be performed 
on the data. Instructions are represented using qubit. The CPU’s inputs are stored in 
the memory, i.e., RAM. The CPU functions a cycle of fetching instructions. After 
fetching an instruction, it is decoded. After decoding, the CPUs execute the instruc-
tion. At this time, the control unit helps to move the data from memory to registers in 
the arithmetic logic unit and then ALU performs the instructions. Finally, the control 
unit stores the result of this operation in memory or a register. Now, let’s describe 
the above working principle in this combinational quantum-DNA nanoprocessor. 

Notice that Fig. 9.1 shows the data as a qubit passed from quantum RAM to the 
DNA instruction register. It cannot be possible to pass qubit to the DNA instruction 
register directly. Before passing the DNA instruction register, the qubit must be 
converted to a DNA sequence. NMR relaxation is used here to convert a qubit to 
a DNA sequence. It is known to us that quantum computing is faster than DNA 
computing. Quantum cache memory has been used here to store qubits. Quantum 
RAM sends data quickly, but DNA cannot accept the information soon. Quantum 
qubits generate so much heat during computations, and on the other hand, heat needs 
to provide DNA for chemical reactions. The quantum heat obtained from the quantum



184 9 Quantum-DNA Nanoprocessor

logical operations is used in this nanoprocessor to perform chemical reactions of DNA 
combinational circuits. That is why a heat transfer circuit has been used here. 

When an instruction is fetched into the DNA decoder, it is executed. The fetching 
and executed parts are completed at the DNA nanoprocessor. Biocomputing or DNA 
computing or biological computing utilizes biological materials and processes for 
computational tasks, aiming to leverage the inherent complexity and efficiency of 
biological systems. Nanoprocessors in this context are nanoscale devices that can 
be programmed to perform specific computations by manipulating the interactions 
between biomolecules. Nanoprocessors in biocomputing refer to nanoscale compu-
tational devices that utilize biological components like DNA, RNA, or proteins to 
perform computations. These devices are designed to process information based on 
biological interactions and stimuli, offering potential for highly parallel and energy-
efficient computation. When an instruction is completed, data as a DNA sequence 
is sent to the quantum RAM. In that case, DNA sequences cannot pass directly to 
quantum RAM. Therefore, it is required to store the DNA sequence to DNA cache 
memory, and from this cache memory, the DNA sequence is fed into the NMR circuit 
to convert the DNA sequence to the qubit. It is required to follow these steps in this 
nanoprocessor: 

1. Pass data as qubit to quantum cache memory. 
2. Do NMR relaxation to convert qubit to the DNA sequence. 
3. After executing an instruction, pass DNA sequence to DNA cache memory. 
4. Use only NMR to convert the DNA sequence to the qubit. 

The whole nanoprocessor will work in this way. The working procedure of quantum 
cache memory, NMR relaxation, NMR, and DNA cache memory will be described 
in detail later. 

9.4 Basic Components of Quantum-DNA Nanoprocessor 

A quantum-DNA nanoprocessor has been designed using the following components 
shown in Fig. 9.1. The components of this nanoprocessor are as follows: 

1. Quantum RAM 
2. DNA Instruction Register 
3. DNA Program Counter 
4. DNA Incrementor 
5. DNA decoder 
6. DNA Multiplexer 
7. DNA ALU 
8. DNA Accumulator. 
9. Quantum cache memory 
10. DNA cache memory 
11. NMR relaxation



9.4 Basic Components of Quantum-DNA Nanoprocessor 185

Fig. 9.1 Quantum-DNA Nanoprocessor



186 9 Quantum-DNA Nanoprocessor

12. NMR and 
13. Heat transfer circuit. 

Except for the above components, three buses are used in this nanoprocessor—data 
bus, address bus, and control bus. These buses are used to transfer data from one 
part to another. These are also essential components of the nanoprocessor that help 
to accomplish meaningful work. 

However, now all components are explained in this section. 

9.4.1 Design and Working Principles of Quantum RAM 

RAM is the most crucial CPU component that stores the data quickly, a primary 
and volatile memory. It is required to design two-qubit RAM for this quantum-DNA 
nanoprocessor. This two-qubit RAM is already illustrated in Sects. 8.4.1 and 8.4.1.1 
in Chap. 8. 

9.4.2 Design and Working Principles of DNA CPU 

According to Fig. 9.1, it is observed that all nanoprocessor elements except RAM are 
in DNA structures. A DNA nanoprocessor consists of a DNA Instruction register, 
program counter, incrementor, multiplexer, decoder, accumulator, and ALU. 

9.4.3 DNA Instruction Register 

The DNA instruction register consists of 16 DNA AND operations shown in Fig. 9.2. 
The instruction bit is double the CPU bit. So, as this instruction is a component of 
a two-bit DNA CPU, Instructions will be .22 = 4. Therefore, the minimum four 
instructions can be defined-LOAD A, LOAD B, ADD A B, and OUT. Instruction 
register is a particular register mainly used to store the instructions currently being 
executed by the DNA computer. 

9.4.4 DNA Program Counter 

The DNA program counter consists of two D flip-flops where the first and second 
D flip-flops are designed using four DNA NAND gates. Each input also has to be in 
DNA, NOT form. The top four DNA NAND circuits represent the first D flip-flop. 
This D flip-flop generates two outputs where one output has been skipped as there



9.4 Basic Components of Quantum-DNA Nanoprocessor 187

Fig. 9.2 DNA instruction register



188 9 Quantum-DNA Nanoprocessor

Fig. 9.3 2-Molecular DNA program counter 

is no need to show according to Fig. 9.3. Another D flip-flop consists of four NAND 
gates delivered after the first DNA D flip-flop. This D flip-flop also generates two 
outputs. Figure 9.3 shows that only two results that act as inputs are required. So, 
the rest of the two outputs have been skipped. The circuit is as follows. 

9.4.5 DNA Incrementer Circuit 

The DNA incrementer circuit is designed only using two DNA half-adder circuits 
shown in Fig. 9.4, where each half-adder consists of an individual DNA XOR circuit 
and individual DNA AND circuit. The DNA XOR gate is used to compute the sum 
result, and DNA AND gate produces the carry-out result. 

9.4.6 DNA Decoder 

To implement a two-molecular DNA CPU, a 2-to-4 DNA decoder is used where 
this decoder consists of four DNA AND operations gates with one enable input. 
Two inputs are fed into this decoder, and each input must be a CNOT form. And



9.4 Basic Components of Quantum-DNA Nanoprocessor 189

Fig. 9.4 2-Molecular DNA incrementer 

this decoder produces four outputs based on given input sequences. The following 
circuit is a two-molecular DNA decoder as shown in Fig. 9.5. 

9.4.7 DNA Multiplexer 

A 4-to-1 MUX (multiplexer) consists of four data input lines defined as ACCTAG, 
TGGATC, ACCTAG, and TGGATC; two select lines are expressed here TGGATC 
and TGGATC and a single output line. There are many ways to draw 4-to-1 MUX, 
but here designing the 4-to-1 MUX by using three 2-to-1 MUX. The calculation of 
MUX will be.2n-to-1 MUX which requires.(2n − 1)2-to-1 MUX..S0 and.S1 select any



190 9 Quantum-DNA Nanoprocessor

Fig. 9.5 2-Molecular DNA decoder 

four input lines to connect the output lines. The circuit of 4-to-1 DNA Multiplexer 
is shown in Fig. 9.6. 

9.4.8 DNA ALU 

An arithmetic logic unit is the core component of a nanoprocessor. It is a combina-
tional circuit that performs arithmetic and logic operations. The control unit indicates 
to ALU what process it needs to achieve on the data and stores the result in an output 
register. It is required to construct a two-molecular DNA ALU for a two-molecular 
DNA nanoprocessor. This two-molecular DNA ALU consists of sixteen DNA AND 
operations selected by DNA 2-to-4 decoder. According to the 2-to-4 decoder, only 
one logical operation is performed, such as addition, multiplier, subtractor, or divider. 
The following circuit is DNA two-molecular ALU as shown in Fig. 9.7. 
Every logical operation like addition and subtraction is executed with the help of a 
decoder. Each logical operation is described below.

• DNA Adder



9.4 Basic Components of Quantum-DNA Nanoprocessor 191

Fig. 9.6 4-to-1 DNA multiplexer 

This DNA Adder consists of two DNA full adders used to perform addition. The 
circuit architecture of the DNA adder is shown in Fig. 9.8. 
According to the diagram in Fig. 9.8, the first full adder produces the sum and the 
C.out that will be the C. in of the next full adder. And this full adder finally produces 
a second output and a C. out. The design procedure and working principle of a DNA 
full adder is discussed in Fig. 9.8.

• DNA Subtractor 

Figure 9.9 shows the DNA full subtractor. A full subtractor is such a combinational 
DNA circuit that can perform subtraction of two molecules, where A and B are control 
bits, B. in is the borrow input, output is the difference D, and B.out is the borrow out. 
Here A and B indicate, respectively, minuend and subtrahend, and 0 is considered 
a target bit which is constant here. According to Fig. 9.9, the first full subtractor 
produces a difference, and B.out will be the B. in of the next full subtractor.



192 9 Quantum-DNA Nanoprocessor

Fig. 9.7 DNA 2-Molecular ALU



9.4 Basic Components of Quantum-DNA Nanoprocessor 193

Fig. 9.8 DNA Adder

• DNA Multiplier 

For performing a two-molecular DNA multiplier, it is required two DNA sequences 
ACCTAG and TGGATC that represent, respectively, 1 and 0. In this circuit, four 
AND gate operations have been implemented with two half-adders. Here, the AND 
gates will perform the multiplication and half-adders will add the partial product 
terms or carry. Hence, the circuit obtained is given in Fig. 9.10. 
At first, it is required to perform four DNA AND gate operations for performing multi-
plication and half-adders will add the partial product. In this circuit, an input portion 
the first two DNA sequences of the left sides are ACCTAG, TGGATC which are 
multipliers and the second two DNA sequences of the right sides are also ACCTAG, 
TGGATC which are multiplicand. ACCTAG and TGGATC represent, respectively, 1 
and 0. There is a constant DNA base sequence in AND gate tubes which makes either 
TRUE or FALSE bond with the upcoming input sequence. Their TRUE bond will be 
double-strand but if they do not make any bond, it will make a single bond which is 
destroyed by the DNase enzyme. They will make a true (1) bond when ACCTAG and 
TGGATC coincide. But when two ACCTAG sequences or two TGGATC sequences



194 9 Quantum-DNA Nanoprocessor

Fig. 9.9 DNA subtractor 

try to make a bond, then their bonding will be false because the same sequence will 
never be able to make a double-strand bond. So, in that case, the output will be 0. The 
TRUE and FALSE bonds, respectively, represent 1 and 0. According to the given 
circuit, the first DNA sequence of input is B. 1 which has been represented by 
ACCTAG, the second DNA sequence of input is B. 0 (TGGATC). , the third DNA 
sequence of input represents A. 1 (ACCTAG), and the last input represents A. 0

(TGGATC). 
From the circuit, the first output will be the multiplication of TGGATC (A. 0) and 
TGGATC (B. 0). As TGGATC represents 0, the multiplication of these two bits will 
also be 0 (TGGATC) which is the first output. 
The first partial product of LSB is the first output/product of LSB. Therefore, there 
is no need to add any partial product. So, output is obtained directly. 
The inputs of the second AND gate are ACCTAG(A. 1) and TGGATC(B. 0) which will 
give an output TGGATC (0) and the inputs of the third AND gate are ACCTAG(B. 1) 
and TGGATC(A. 0) which gives output TGGATC (0). The obtained two outputs from 
the two AND gates will be the input of the DNA XOR gate which perform addition



9.4 Basic Components of Quantum-DNA Nanoprocessor 195

Fig. 9.10 DNA multiplier 

and generate output TGGATC (0). Then AND gate is performed the operation which 
generates a carry bit. This is the half-adder operation. And finally, the last DNA AND 
gate produces the output ACCTAG (1) which is the multiplication of ACCTAG (B. 1) 
and ACCTAG (A. 1). This output and the previous carry bit from the first half-adder 
will be the input of XOR produces output ACCTAG (1) and the output of the DNA 
AND gate of the half-adder will act as the carry bit. As there is no carry bit, it simply 
represents TGGATC (0). Now, the movement from the MSB (Most significant bit) 
to LSB (least significant bit) then the output will be respectively, TGGATC (0), 
AGGTAC (1), TGGATC (0), and TGGATC (0), respectively that is the production 
of ACCTAG (1) and TGGATC (0) multiplicand and ACCTAG (1) and TGGATC 
(0) multiplier. According to the binary logic, the product of 10 molecules and 10



196 9 Quantum-DNA Nanoprocessor

molecules is 0100 which has been implemented here. In this circuit, the input can be 
anything. So, it is the whole working procedure of a 2-molecular DNA multiplier. 

A. 1 (ACCTAG) A. 0 (TGGATC) 

B. 1 (ACCTAG) B. 0 (TGGATC) 

A. 1 B. 0 (FALSE) A. 0 B. 0 (FALSE). (Partial product)

B. 1 A. 1 (TRUE) B. 1 A. 0 (FALSE) . × (Left shift) 

C. 2 (FALSE) B. 1 A. 1 (TRUE) A. 1 B. 0 (FALSE) A. 0 B. 0 (FALSE) 

+ 

B. 1 A.0 (FALSE) 

P.3 (FALSE) P.2 (TRUE) P. 1 (FALSE) P. 0 (FALSE). (Total output)

If the multiplication of any two DNA sequences is 0, it will be false which is expressed 
by F and if production is 1 of any two DNA sequences, it will be true which is 
presented by 1 in the above multiplication portion.

• DNA Divider 

The logical operations of the circuit depend on the number of DNA sequences. This 
circuit has been completed using a 2-molecular divisor and 2-molecular divisible 
which produces a maximum 4-bit output. Here, bit means sequence ACCTAG (1) 
and TGGATC (0). Let, the divisor be ACCTAG (1) and TGGATC (0) and the dividend 
be also ACCTAG (1) and ACCTAG (1). Now, if ACCTAG (1) and ACCTAG (1) are 
divided by divisor ACCTAG (1) and TGGATC (0), then Quotient, respectively, 0 at 
the first output and 1 at the second output which works according to the following 
circuit. Figure 9.11 shows the circuit architecture of a DNA divider operation. 

9.4.9 Accumulator 

One DNA AND gate and two D flip-flops are fed into the accumulator as input; four 
DNA NAND operations are performed to implement each D flip-flop. The DNA 
AND gate has two inputs named LOAD and CLOCK. The output of the AND gate 
will be the input of each D flip-flop. And finally, after performing all operations, each 
D flip-flop evaluates the first and the second outputs. Figure 9.12 shows the DNA 
accumulator circuit.



9.4 Basic Components of Quantum-DNA Nanoprocessor 197

Fig. 9.11 DNA divider 

9.4.10 Quantum Cache Memory 

Cache memory can be used in the quantum system due to its speed and reliability. 
It can pass and get data very frequently. The mapping and swapping techniques in 
the cache memory are much more optimized. But to use a cache memory in the 
quantum system, it needs to be designed. The Figures and description of Quantum 
cache memory are discussed in Part I, Chap. 2, Sect. 2.5.



198 9 Quantum-DNA Nanoprocessor

Fig. 9.12 DNA accumulator 

9.4.11 DNA Cache Memory 

DNA cache memory, which will store DNA sequences after coming from the DNA 
circuit. The detailed figures and description are discussed in Part II, Chap. 4 and 
Sect. 4.5. 

9.4.12 NMR at 0-K for Converting DNA Sequence to Qubit 
in DNA-Quantum Nanoprocessor 

NMR is a physical phenomenon wherein the nucleus in a magnetic field absorbs and 
emits electromagnetic radiation. NMR creates a strong magnetic field and makes 
molecules’ nuclei excited, and then molecules exist in superposition. This energy is 
at a particular resonance frequency that relies upon the strength of the magnetic field 
and the magnetic properties of the isotope of the atoms. NMR permits the observation 
of specific quantum mechanical and, magnetic properties of the atomic nucleus. The 
details of NMR are described in Part IV, Chap. 14, Sect. 14.3.



9.5 Applications 199

9.4.13 NMR Relaxation at 0-K for Converting Qubit 
to the DNA Sequence in Quantum-DNA 
Nanoprocessor 

NMR relaxation is when an exciting magnetic state returns to its equilibrium dis-
tribution. When a molecule drops into the NMR probe as a sample, it goes to an 
excited state with the help of a magnetic field. NMR relaxation is used to convert 
qubit to a DNA sequence at 0-K. The details of this are described in Part IV, Chap. 
14, Sect. 14.3. 

9.4.14 Heat Transfer Circuit 

Quantum circuits produce heat, and DNA requires heat to perform a DNA operation 
in quantum computation and DNA computation. In the quantum process, qubits gen-
erate heat when they become isolated and estimated. So, this heat can be transferred 
to DNA circuits. It transmits heat from quantum RAM to DNA CPU. This is the 
main reason for using the heat transfer circuit here. The details of the heat transfer 
circuit will be discussed in Part IV, Chap. 13, and Sect. 13.2. 

9.5 Applications 

Quantum computing is incredibly faster than DNA computing. Furthermore, DNA 
computing has more and more storage capacity than quantum computing. It is known 
that quantum qubits generate much heat, and DNA molecules need to provide tem-
peratures for chemical reactions. Therefore, the two are connected so that the tem-
perature can be adjusted. The proposed nanoprocessor can work better in the medical 
field. They will detect any disease as this nanoprocessor inherits DNA features. Cal-
culations with quantum computing are particularly promising and can solve complex 
problems with vast amounts of data. 
On the other hand, DNA computing can also solve NP combinatorial problems 
promisingly. So, it can ensure that this nanoprocessor can solve complex math-
ematical problems and equations faster than the expectations. Moreover, this 
nanoprocessor will store more and more information as it will bear the DNA’s 
features.



200 9 Quantum-DNA Nanoprocessor

9.6 Summary 

This chapter shows a loamy nanoprocessor using quantum computing and DNA 
computing. Quantum computing and DNA computing have potential advantages in 
computing technology. Although there are so many advantages, limitations are not 
more minor. The prime motto of implementing this nanoprocessor is to reduce demer-
its and to increase merits. The algorithm has been shown here, and speed has been 
measured to check the power of its performances. DNA can inherit the computing 
property, and it can be an incredible combination that can solve more unimaginable 
problems than the expectations. DNA resources are available in nature. So, the cost 
of this nanoprocessor will be less. Data search will be easy, and this will ensure high 
privacy. But during implementation many problems will arise. This implementation 
is complex, and it will be challenging to secure privacy on the internet. Another cause 
can be heating problems because sometimes it needs to provide more heat in DNA 
logical operations from outside, which will be more challenging. But the uses of this 
nanoprocessor will take computer technology a big step forward. But for this, more 
research in this field is needed.



Chapter 10 
DNA-Quantum Nano Processor 

10.1 Introduction 

DNA computing is one interdisciplinary research field that is growing fast as it can 
simulate the biomolecular structure of DNA and compute using this DNA sequence. 
At first, Adleman showed that DNA could solve a problem. He cracked a complex 
problem using the Hamiltonian path problem, and this approach has been extended by 
Lipton, who can solve another NP-complete problem. Many researchers are working 
to produce a computer based on DNA molecules to replace or beneficially comple-
ment a silicon-based computer. The primary function of DNA is to transmit data, and 
they can process this data simultaneously. Data is encoded in a DNA strand form in 
this DNA computing. It has several merits such as high storage capacity, faster speed 
because of parallelism, and low power consumption. A mix of 1018 DNA strands 
could operate 104 times faster than today’s advanced computer, which is incredible. 

On the contrary, there is another computing system known as quantum computing. 
It also has several advantages such as data security, high storage capacity, and less 
power. And the most important thing is that these two systems can inherit their 
properties from each other. That is why to implement such a nanoprocessor that will 
be loamy, i.e., it will have the property of two computing systems at a time. It will 
be a beautiful combination that will add a new dimension to computer technology 
progress. This nanoprocessor is quite the same as the quantum DNA nanoprocessor. 
RAM will be kept in DNA form in this nanoprocessor implementation, and other 
components will be held in quantum form. As RAM will be in a DNA state, it must 
have a vast and massive storage capacity. Therefore, it will store more and more data 
in a small area. This is the most significant advantage of this nanoprocessor. However, 
it is required to convert DNA sequence to qubits and qubits to DNA sequence like 
the previous nanoprocessor that were already discussed in Chap. 9. A quadrupole ion 
trap is used to convert the DNA sequence to the qubit. This quadrupole ion trap will 
accept DNA sequence and convert it into qubit. A quadrupole ion trap is such an ion 
trap that uses dynamic electric fields to trap any charged particles. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9_10 

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5349-9_10&domain=pdf
https://doi.org/10.1007/978-981-97-5349-9_10
https://doi.org/10.1007/978-981-97-5349-9_10
https://doi.org/10.1007/978-981-97-5349-9_10
https://doi.org/10.1007/978-981-97-5349-9_10
https://doi.org/10.1007/978-981-97-5349-9_10
https://doi.org/10.1007/978-981-97-5349-9_10
https://doi.org/10.1007/978-981-97-5349-9_10
https://doi.org/10.1007/978-981-97-5349-9_10
https://doi.org/10.1007/978-981-97-5349-9_10
https://doi.org/10.1007/978-981-97-5349-9_10
https://doi.org/10.1007/978-981-97-5349-9_10


202 10 DNA-Quantum Nano Processor

On the other hand, it is possible to use trap ions to convert qubits to the DNA 
sequence. An ion trap is an “electric-field-test-tube” that contains gaseous ions. 
These gaseous ions can be either positively charged or negatively charged. Nanopro-
cessors, which are devices at the nanoscale, play a crucial role in building quantum 
computers. They are used to fabricate qubits, which are the fundamental units of 
information in quantum computing. On the other hand, nanoprocessors can also 
be used to build bio-inspired computing systems, which mimic the way biological 
systems process information. For example, networks of nanoscale channels can be 
created to regulate the flow of molecules, potentially leading to a new type of com-
puting. Bioquantum computing or DNA-quantum computing or biological quantum 
computing combines the principles of quantum mechanics with biological systems. It 
explores how quantum phenomena can be used to perform computations in biological 
contexts, such as simulating complex biological systems or developing new drugs. 
This field aims to leverage the power of quantum computers to tackle challenges in 
biology and medicine, such as drug discovery, disease modeling, and personalized 
medicine. Nanoprocessors in bioquantum computing refer to the use of nanoscale 
devices and quantum mechanical principles to perform computations, particularly in 
biological contexts. This field leverages the unique properties of quantum systems, 
like superposition and entanglement, to tackle problems in biology and medicine 
that are computationally intractable for classical computers. Nanoprocessors, being 
extremely small, can be used to create the physical components of quantum comput-
ers, such as qubits, and can also be used to build bio-inspired computing systems. 
This chapter will describe the DNA-quantum nanoprocessor. 

10.2 Basic Definitions 

A DNA-Quantum nanoprocessor is a combinational nanoprocessor that has been 
designed using DNA sequence and quantum qubits. Biological quantum comput-
ing or DNA-quantum computing or bio-quantum computing explores the potential 
for using biological systems for quantum computation, either by leveraging naturally 
occurring quantum phenomena within living organisms or by building quantum com-
puters using biological materials or structures. Nanoprocessors, specifically, could 
play a role in both of these approaches, providing nanoscale tools for manipulation 
and control of biological components or for creating small-scale quantum comput-
ing devices. Some researchers hypothesize that certain biological processes, like 
photosynthesis or brain function, might utilize quantum phenomena for enhanced 
efficiency or information processing. This could involve using quantum entangle-
ment or superposition within living cells. In essence, biological quantum computing 
and nanotechnology are intertwined. Nanotechnology provides the tools to build and 
control the complex structures needed for quantum computation, while biological 
systems offer a potential source of inspiration and materials for quantum computing. 
A nanoprocessor will execute all types of logical instructions on behalf of programs. 
A nanoprocessor consists of five core components: control unit, register, arithmetic



10.4 Basic Components of DNA-Quantum Nanoprocessor 203

logic unit, RAM, and buses. All these components help nanoprocessors to accom-
plish work properly. The basic definitions of these components are already described 
in Sect. 8.2 in Chap. 8, Sect. 8.3 in Chap. 8, and Sect. 9.2 in Chap. 9. 

10.3 Block Diagram of DNA-Quantum Nano Processor 

The following nanoprocessor consists of a quantum instruction register, program 
counter, multiplexer, arithmetic logic unit, and DNA RAM. In addition, there is a 
heat transfer circuit shown here to eliminate heat from the quantum combinational 
circuit and an additional power source to provide heat into the DNA combinational 
circuit to perform the chemical reaction with each other. Figure 10.1 represents the 
DNA-quantum nanoprocessor. 

The above nanoprocessor is called DNA-quantum nanoprocessor, and it is a two-
molecular DNA sequence qubit. A DNA sequence passed from DNA RAM to the 
quantum instruction register in the above nanoprocessor. This is because DNA cache 
memory is used and a quadrupole ion trap between DNA RAM and quantum IR 
where cache memory is used to store data, and a quadrupole ion trap has been used 
here to convert the DNA sequence to the qubit. An ion trap is an “electric-field-test-
tube” that contains gaseous ions. These gaseous ions can be either positively charged 
or negatively charged. On the contrary, a quadrupole ion trap is such an ion trap that 
uses dynamic electric fields to trap any charged particles. 

When an instruction is fetched into the quantum decoder, it is executed. After 
completing an instruction, data as a qubit is sent to the DNA RAM. But the problem 
is that one cannot send qubit to DNA RAM directly. It is required to convert it. 
Before passing and performing this operation, a standard trap ion has been used to 
convert qubit to DNA RAM address. But in that case, it is required to store the qubit 
in quantum cache memory. This nanoprocessor will follow the given steps: 

1. Pass data as DNA sequence to DNA cache memory. 
2. Do quadrupole for converting DNA sequence to the qubit. 
3. After executing an instruction, pass the qubit to quantum memory. 
4. Use only trap ions for converting qubits to a DNA sequence. 

10.4 Basic Components of DNA-Quantum Nanoprocessor 

A DNA-quantum nanoprocessor consists of the RAM, IR, ALU, MUX, incrementor, 
PC, accumulator, and decoder, where RAM is the only component implemented using 
DNA sequence, and other components of this nanoprocessor have been designed 
using qubit. DNA RAM is demonstrated below, and the rest of the components have 
been appropriately illustrated with their circuits in the subsection of 8.4 Section in 
Chap. 8.



204 10 DNA-Quantum Nano Processor

Fig. 10.1 DNA-quantum nanoprocessor



10.4 Basic Components of DNA-Quantum Nanoprocessor 205

Fig. 10.2 2-molecular DNA RAM 

10.4.1 DNA RAM 

It requires two DNA sequences as address lines, and each address line has to be 
connected with a DNA NOT operation for simulating 4-to-2-molecular DNA RAM. 
These address line combinations will be the input of 2-to-4 DNA decoders which 
consists of four DNA AND functions, and the DNA decoder must enable input. Four 
select lines are achieved from the decoder and each select line is attached to each 
RAM cell. The word calculation of RAM will be . 2k , where . k is the address line, 
and .2k is the total words of .n-bit, and the decoder combination will be .k × 2k . This  
two-molecular RAM consists of four separate DNA RAM cells, and each cell has 
three inputs such as D. 0 or D. 1 or others. Anyone selects lines and can read/write 
inputs. The obtained output from four DNA RAM cells will be the input of a DNA 
OR operation, which produces the final output. This is the whole design procedure 
of 4-to-2-molecular RAM. The circuit of DNA RAM is given in Fig. 10.2. 

Figure 10.3 presents the implementation of a 4-to-2-molecular sequence DNA 
RAM. The DNA RAM cell is given in Fig. 10.3.



206 10 DNA-Quantum Nano Processor

Fig. 10.3 DNA RAM cell 

10.5 Quadrupole Ion Trap 

A quadrupole ion trap is such an ion trap that uses dynamic electric fields to trap any 
charged particles. They are also called Paul traps or radio-frequency traps (RF). 
This trap is used as a component of a mass spectrometer. It is used to convert 
DNA sequences to qubits. The detailed description is given in Part 2, Chap. 9, and 
Sect. 9.3.6. 

10.6 Paul Trap Ion 

An ion trap is an “electric field test tube” that has gaseous ions. These gaseous ions 
can be either positively charged or negatively charged. The two most common ion 
traps are the Penning trap, which is used to comb through static and oscillating 
electric fields. Here the Paul trap is used. The details of this is discussed in Chap. 9, 
Sect. 9.2.3.



10.9 Summary 207

10.7 Design Procedure and Working Principle of DNA 
Cache Memory and Quantum Cache Memory 

Cache memory is a high-speed random-access memory that is built into the nanopro-
cessor. Data is transferred into cache memory more quickly than RAM. The cache 
memory holds the temporary data in the CPU which may require for manipulation. It 
is important to note that the design and working principle of DNA cache memory and 
quantum cache memory have the same manner. The design procedure and working 
principle of these cache memories have already been demonstrated in Chap. 4 and 
Chap. 2, Sects. 4.5 and 2.5. 

10.8 Applications 

The main role of DNA molecules is that they can store information for long-term. 
They use DNA strands to store information and use its properties of DNA to perform 
logical operations. A small test tube of DNA strands can operate billions of operations 
simultaneously, and thus this DNA computing achieves a high speed. DNA’s molecule 
performance is assumed to be faster than today’s supercomputers. On the contrary, 
the power of quantum computing is impressive. This is because these computers are 
so effective for data simulations. 

Furthermore, these computers ensure high privacy because they are good at cryp-
tography. From this discussion, it is said that these two systems can open a new door 
to the incredible invention together. Based on figuring out these, a DNA-quantum 
nanoprocessor is made. Any complex and mathematical operations are calculated 
using these nanoprocessors within a second. This will ensure high security and can 
play a significant role in online security depending on the difficulty of large numbers 
into primes. Furthermore, by combining this nanoprocessor, one can solve any prob-
lem with the help of both nanoprocessors, such as optimization problems, weather 
forecasting, and chemical solutions. 

10.9 Summary 

This chapter has given a detailed explanation of the nanoprocessor and introduced a 
new cutting-edge technology-based nanoprocessor. This new nanoprocessor should 
be fast, error-resistant, and robust. This chapter first shows a block diagram of a two-
molecular DNA nanoprocessor and then demonstrates the algorithm to construct 
this latest technology-based processor. Moreover, heat is measured and the speed 
is checked. The main motto of this nanoprocessor is to achieve more advantages. 
This design of DNA-quantum nanoprocessor follows the previous nanoprocessor. It



208 10 DNA-Quantum Nano Processor

is known that quantum computing and DNA computing already have many poten-
tial benefits. Despite having many advantages, if these two logical computations are 
combined, the users will gain more advantages that will progress the computer tech-
nology. This new computing method will add a new dimension to DNA computing 
and the quantum computing arena. But the problem is that it is not easy to imple-
ment practically. Many obstacles have been faced during implementation because the 
working environment of these two systems is different. For example, it is required to 
provide heat from outside the territory for performing chemical reactions, which can 
be challenging to handle. Another thing is that the entanglement of many qubits and 
DNA sequences is currently as tricky as maintaining the necessary state, and there 
is a probability of increasing high error rates in this nanoprocessor.



Part IV 
Heat, Speed, and Data Related Issues 

in Quantum Biocomputing 

Overview 

The main objective of this part is to provide information about Heat Measure-
ment, Heat Transfer, Speed Calculation, Data Conversion and Data Management 
in quantum computing and DNA computing. The importance of heat calculation 
cannot be described in limited words. Depending on the produced heat from DNA 
operational circuit, quantum operational circuit, DNA-quantum operational circuit, 
and quantum-DNA operational circuit, one can identify the useful one for daily life 
or research. In addition, produced heat or required heat for quantum computing 
and DNA computing is an arresting matter for researchers. Chapter 11 describes 
the procedure for calculating heat from the mentioned operational circuits. In the 
case of calculating heat from quantum operational circuits, thermodynamics law 
and its theory has been used for to capture produced heat of each quantum qubit. 
The produced heat from a circuit is proportional to the number of quantum qubits 
used in the circuit. In the DNA operational circuit where a certain amount of heat 
is needed to perform any computing operation. It performs some specific steps as 
synthesizing, mixing, annealing, melting, amplifying, separating, extracting, cutting, 
ligating, subtracting, marking DNA sequence, destroying, detecting, and reading 
DNA sequence. According to the research of Zheng and Yang, each specific step of 
DNA computation needs different amounts of heat and it never exceeds 98 degrees 
Celsius. The melting step requires heat which depends on its sequence where the 
number of adenine, guanine, cytosine, and thymine molecules is considered. Besides 
the accuracy of a system, speed is a metric that can be used to measure the perfor-
mance of a system. The main objectives of Chap. 12 are to calculate the operational 
speed of DNA operational circuit, quantum operational circuit, DNA-quantum oper-
ational circuit, and quantum-DNA operational circuit. The heat transfer is another

https://doi.org/10.1007/978-981-97-5349-9_11
https://doi.org/10.1007/978-981-97-5349-9_12


210 Part IV: Heat, Speed, and Data Related Issues in Quantum Biocomputing

issue here to be discussed. The heat produced by quantum computing can be trans-
ferred to DNA computing where heat is needed to perform computation. Exces-
sive heat is bad for quantum circuits, so the surplus heat is transferred to the DNA 
circuit to keep it balanced. This heat transfer has happened only in quantum-DNA 
and DNA-quantum circuits and is discussed in Chap. 13. Data conversion is very 
important in whole working with quantum-DNA circuits and DNA-quantum circuits. 
Chapter 14 describes the data conversion circuits like trap ion, quadrupole trap ion, 
NMR, and NMR relaxation circuits. The conversion process of quantum data (qubit) 
to DNA data (DNA sequences) and DNA data to quantum data is shown here. The 
last chapter (Chap. 15) of this part describes the data management system during 
computation. The cache memory to control data is an important matter to explain. 
DNA cache memory and quantum cache memory are needed for the computation of 
quantum-DNA circuits and DNA-quantum circuits (quantum biocomputing circuits).

https://doi.org/10.1007/978-981-97-5349-9_13
https://doi.org/10.1007/978-981-97-5349-9_14
https://doi.org/10.1007/978-981-97-5349-9_15


Chapter 11 
Heat Calculation 

11.1 Introduction 

Quantum computing is a field of study that focuses on the creation of computer-
based technologies based on quantum-theoretical principles. On the quantum (atomic 
and subatomic) level, quantum theory describes the nature and behavior of energy 
and matter. To execute certain computational tasks, quantum computing employs a 
combination of qubits. All of this are done at a far higher rate than their traditional 
computing equipment. Quantum computers represent a significant advancement in 
computing capability, with enormous performance benefits for specific use cases. The 
ability of bits to be in several states at the same time gives the quantum computer a 
lot of computing capability. They can accomplish jobs with a mix of | 1. >, | 0. >, and 
both | 1.> and | 0.> at the same time. So, quantum computing can be defined as an 
area of computing that is focused on the development of computer technology based 
on the principles of quantum theory. In addition, quantum computing is much faster 
than classical bit-wise computing. 

On the other hand, instead of using typical silicon chips, DNA computing 
uses biological molecules to do computations. The four-character genetic alphabet 
(A-adenine, G-guanine, C-cytosine, and T-thymine) is used in DNA computing 
instead of the binary alphabet (1 and 0) utilized by standard computers. This is pos-
sible due to the ability to create small DNA molecules with any arbitrary sequence. 
The input of any DNA operation can be represented by DNA molecules with spe-
cific sequences. The instructions are carried out by laboratory operations on the 
molecules, and the result is defined as some property of the final set of molecules. 
DNA computing promises significant and meaningful linkages between computers 
and life systems, as well as massively parallel computations. DNA computing can 
actually carry out millions of operations at the same time. 

The produced heat from a circuit is always an important topic for each type of 
computing circuit. Nowadays, produced heat or required heat for quantum computing 
and DNA computing is an arresting matter for researchers. This chapter is going 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9_11 

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5349-9_11&domain=pdf
https://doi.org/10.1007/978-981-97-5349-9_11
https://doi.org/10.1007/978-981-97-5349-9_11
https://doi.org/10.1007/978-981-97-5349-9_11
https://doi.org/10.1007/978-981-97-5349-9_11
https://doi.org/10.1007/978-981-97-5349-9_11
https://doi.org/10.1007/978-981-97-5349-9_11
https://doi.org/10.1007/978-981-97-5349-9_11
https://doi.org/10.1007/978-981-97-5349-9_11
https://doi.org/10.1007/978-981-97-5349-9_11
https://doi.org/10.1007/978-981-97-5349-9_11
https://doi.org/10.1007/978-981-97-5349-9_11


212 11 Heat Calculation

to express some ways to find out the amount of heat produced from a quantum 
computing circuit and calculate the amount of required heat for DNA computation. 

11.2 Basic Definitions for Heat Calculation in Quantum 
Circuits 

This section discusses basic information and theory to calculate the produced heat 
from quantum circuits and the heat required to perform a DNA operation in quantum 
and DNA computations. 

In quantum operation, qubits generate heat when they become isolated and start 
to compute. In quantum physics, thermodynamics exists and the thermodynamics 
rule is quite the same for qubit also. When a quantum system is a single qubit then 
the Hamiltonian matrix can be written as follows: 

.H = −1

2
eσ (11.1) 

This may correspond to an electric spin in a vertical magnetic field where is the 
energy difference between the states |.↑ . > = |0. > and |.↓ . > = |1. >. The same Hamilton 
matrix may also refer to a two-level atom where the ground and excited states are 
denoted as |0.> and |1. >, respectively. The Gibbs state of the qubit takes the form: 

.ρβ = 1

2cosh
(
βe

2

)eβe σ
2 = 1

1 + e−βe
(|0 > 0| + e−βe |1 > 1|) (11.2) 

Researchers have introduced the inverse temperature .β = 1/K . BT. Then the 
occupation number, 

. nβ = tr
(
n̂ p̂β

) = 1

1 + exp(βε)

So, the average energy of thermal qubit, 

.E = 1

1 + exp (βe)
, 0 < E <

1

2
e (11.3) 

This is identified as the thermodynamic energy of the thermal qubit. Now the von 
Neumann entropy of the Gibbs state can be calculated according to, and with one 
eye on thermodynamics, the right-hand side can be expressed in terms of the energy 
E.



11.2 Basic Definitions for Heat Calculation in Quantum Circuits 213

. S (E) = −e − E

e log
e − E

e − E

e log
E

e , 0 < E <
1

2
e

Then S. th Energy will, .Sth (E) = (kBln2) S (E). 
So, the entropy of a single thermal qubit is, 

. 
dSth (E)

dE
= 1

T

And, the entropy for n thermal qubit is, 

.
dSth (E)

dE
= n

T
(11.4) 

It is known that, 

. β = 1

KBT

Here is the inverse temperature kb is the Boltzmann constant and T is the room 
temperature initially. 

. β = 1

KBT

. = 1

8.617 × 10−5 × 300
= 39 ev−1

So, the average energy of thermal qubit, E = . 
1

1±e39×ε

. = 1

1 ± e39×0.9

= 5.7051 × 10−16

Here, . ε is emissivity and this value will be 0 to 1 concerning the molecule. Consider 
. ε = 0.9 for ideal purposes. 

Now, according to qubit thermodynamics, the S. th energy is 
S. th (E) = (K. b ln 2) S (E) 

. = −kB
ε − E

ε
ln

ε − E

ε
− kB

E

ε
ln

E

ε

= 1.9118 × 10−18 and Sth (E) is quantum mechanics qubit entropy.



214 11 Heat Calculation

This is identified as the thermodynamic energy of the thermal qubit. Now the von 
Neumann entropy of the Gibbs state can be calculated using Eq. (11.5). 

S. th (E, N) = N (K. b ln 2) S (E/N) 

. = −kB
ε − E/N

ε
ln

ε − E/N

ε
− kB

E/N

ε
ln

E/N

ε
(11.5) 

Here .e =0.9 
E = 5.7051 . ×10. −16

N = Number of qubits in the operation 
K.B = Boltzmann constant, .8.617 × 10−5 evT.. −1

Now, by using Eqs. (11.3), (11.4), and (11.5), produced heat can be calculated from 
any quantum circuit. Some basic quantum operational circuits are described below 
for calculating produced heat, where N is the number of the quantum qubit. Produced 
heat from CNOT, quantum AND, OR, XOR, NAND, NOR, and XOR operational 
quantum gate operation is calculated below using the total number of quantum qubits. 

11.2.1 Quantum NOT Operation 

Quantum NOT operation is a one-qubit gate. So, to measure produced heat from 
the quantum NOT operational gate, it is needed to follow the following steps where 
Fig. 11.1 shows the quantum NOT gate. 

Here, . dSth(E)

dE = N
T , where N .= 1; 

So, T . = dE x N
dSth(E)

. = 5.7051 × 10−16 × 1

1.9118 × 10−18

= 298.148K

So, the produced heat from the quantum NOT gate is .298.148 K. 

11.2.2 Quantum CNOT Operation 

Quantum controlled-NOT gate (CNOT) is a double qubit gate. So, to measure the 
roduced heat from the quantum CNOT operational gate, it is needed to follow the 
following steps where Fig. 11.2 shows the quantum CNOT gate. 

Fig. 11.1 Quantum NOT 
gate



11.2 Basic Definitions for Heat Calculation in Quantum Circuits 215

Fig. 11.2 Quantum CNOT 
gate 

It is known that, for N qubit gate, S. th (E, N) .= N (Kb ln 2) S (E/N) 

. = −kB
ε − E/N

ε
ln

ε − E/N

ε
− kB

E/N

ε
ln

E/N

ε

Quantum CNOT operational gate is a double qubit gate. So, N .= 2. 
Thus, S.th . (E, N ) = 1.94 × 10−18

T . = dE x N
dSth(E)

. = 5.7051 × 10−16 × 2

1.948 × 10−18

= 585.32 K

So, the heat produced from the Quantum CNOT gate is 585.32 K. 

11.2.3 Quantum AND Operation 

Quantum AND operational gate is a triple qubit gate. So, to measure produced heat 
from Quantum AND operational gate, the following steps should be followed where 
Fig. 11.3 shows quantum AND operational gate. 

It is known that, for N qubit gate, S. th (E, N) .= N (Kb ln 2) S (E/N) 

. = −kB
ε − E/N

ε
ln

ε − E/N

ε
− kB

E/N

ε
ln

E/N

ε

Quantum AND operational gate is a triple qubit gate. So, N = 3. 

Fig. 11.3 Quantum AND 
operational gate



216 11 Heat Calculation

Thus, S.th . (E, N ) = 1.97144x10−18

T =. 
dE × N
dSth(E)

. = 5.7051 × 10−16 × 3

1.97144 × 10−18

= 868.162 K

Thus, the produced heat from Quantum AND operational gate is 868.162 K. 

11.2.4 Quantum OR Operation 

Quantum OR operational gate is a triple qubit gate. So, to measure produced heat 
from Quantum OR operational gate, the following steps should be followed where 
Fig. 11.4 shows quantum OR operational gate. 

It is known that, for N qubit gate, S. th (E, N) = N (Kb ln 2) S (E/N) 

. = −kB
ε − E/N

ε
ln

ε − E/N

ε
− kB

E/N

ε
ln

E/N

ε

Quantum OR operational gate is a triple qubit gate. So, N = 3. 
Thus, S.th . (E, N ) = 1.97144 × 10−18

T =. 
dE x N
dSth(E)

. = 5.7051 × 10−16 × 3

1.97144 × 10−18

= 868.162 K

Thus, the produced heat from Quantum OR operational gate is 868.162 K. 

Fig. 11.4 Quantum OR operational gate



11.3 Heat Calculation for Quantum Operational Circuits 217

11.3 Heat Calculation for Quantum Operational Circuits 

This section will describe the way to calculate the total produced heat of a quan-
tum operational circuit. The basic information for calculating produced heat from a 
particular quantum operational gate is provided in the previous section. 

11.3.1 Quantum Full Subtractor 

A Full subtractor is a combinational circuit that is developed to overcome the draw-
back of the half subtractor circuit. It can take three inputs and after subtracting them 
creates two outputs. Here, a Full subtractor is implemented using the Quantum cir-
cuit. To create a Full Subtractor, two quantum NOT, two quantum XOR, two quantum 
AND, and a quantum OR gate are required. Figure 11.5 shows the quantum circuits 
of a full subtractor. A full subtractor receives three inputs and produces two outputs 
containing “|D. >” and “|Bout. >”. 

Full subtractor is a 4 qubit quantum operation (considering 1 ancilla qubit and 
3 input qubits) and for this quantum operation heat measurement will be calculated 
using the following formula. 

.
dSth (E)

dE
= n

T
(11.6) 

It is known that, for N qubit gate, S. th (E, N) = N (Kb ln 2) S (E/N) 

Fig. 11.5 Quantum full subtractor circuit



218 11 Heat Calculation

. = −kB
ε − E/N

ε
ln

ε − E/N

ε
− kB

E/N

ε
ln

E/N

ε

Quantum Full Subtractor operation has 4 qubits in the figure. So, N = 4. 
Thus, S.th . (E, N ) = 1.9791 × 10−18

T =. 
dE x N
dSth(E)

. = 5.7051 × 10−16 × 4

1.9791 × 10−18

= 1153.05 K

Thus, the produced heat from Quantum Full Subtractor operation is 1153.05 K. 

11.3.2 Quantum 3-Qubit Even Parity Qubit Checker 

A circuit that checks the parity in the receiver is called a Parity Checker. A combined 
circuit or device of parity generators and parity checkers are commonly used in digital 
systems to detect single-bit errors in the transmitted data. To create a 3-qubit even 
parity qubit checker, three XOR gates are required. Figure 11.6 shows the digital and 
quantum circuits of a 3-qubit even parity-qubit checker. A 3-qubit even parity qubit 
checker receives four inputs and produces one output containing “E”. 

3-qubit even parity qubit checker is a 4 qubits quantum operation and for this 
quantum operation heat measurement will be calculated using the following formula: 

. 
dSth (E)

dE
= n

T

Fig. 11.6 Quantum 3-qubit even parity qubit checker



11.3 Heat Calculation for Quantum Operational Circuits 219

It is known that, for N qubit gate, S. th (E, N) = N (Kb ln 2) S (E/N) 

. = −kB
ε − E/N

ε
ln

ε − E/N

ε
− kB

E/N

ε
ln

E/N

ε

Quantum parity bit checker operation has 4 qubits in the figure. So, N = 4. 
Thus, S.th . (E, N ) = 1.9791 × 10−18

T =. 
dE x N
dSth(E)

. = 5.7051 × 10−16 × 4

1.9791 × 10−18

= 1153.05 K

Thus, the heat produced from the quantum parity qubit checker is 1153.05 K. 

11.3.3 Quantum 3-to-1 Multiplexer 

A multiplexer (MUX) is a device that can receive multiple input signals and syn-
thesize a single output signal in a recoverable manner for each input signal. It is 
also an integrated system that usually contains a certain number of data inputs and 
a single output. To create a multiplexer, one quantum NOT, two quantum AND, 
and one quantum OR gate is required. Figure 11.7 shows the quantum circuit of the 

Fig. 11.7 Quantum multiplexer circuit



220 11 Heat Calculation

Multiplexer. A Multiplexer receives three inputs and produces one output containing 
“Y”. 

2-to-1 Multiplexer is a 4-qubit quantum operation (considering 1 ancilla qubit and 
3 input qubits) and for this quantum operation heat measurement will be calculated 
using the following formula: 

. 
dSth (E)

dE
= n

T

It is known that, for N qubit gate, S. th (E, N) = N (Kb ln 2) S (E/N) 

. = −kB
ε − E/N

ε
ln

ε − E/N

ε
− kB

E/N

ε
ln

E/N

ε

Quantum multiplexer operation has 4 qubits in the figure. So, N = 4. 
Thus, S.th . (E, N ) = 1.9791 × 10−18

T =. 
dE × N
dSth(E)

. = 5.7051 × 10−16 × 4

1.9791 × 10−18

= 1153.05 K

Thus, the produced heat from the quantum multiplexer operation is 1153.05 K. 

11.4 Basic Definitions for Heat Calculation in DNA Circuits 

DNA has the characteristics of enabling classical logical operation using DNA 
sequence. DNA prefers to be in double-stranded form, while single-stranded DNA 
naturally migrates towards complementary sequences to form double-stranded com-
plexes. Complementary sequences pair the bases adenine (A) with thymine (T) and 
cytosine (C) with guanine (G). DNA sequences pair in an antiparallel manner, with 
the 5’ end of one sequence pairing with the 3’ end of the complementary sequence. 

Each DNA gate input will be the single standard sequence, if one is true, the com-
plementary DNA sequence will be false. Suppose if ACTCGT is the input sequence 
then the complementary sequence will be TGAGCA. In DNA computing, when 
designing the logic gate, a predetermined single-strand sequence can be supplied to 
induce an appropriate chemical reaction. This sequence also helps to evaluate the 
output value whether it is true or false. 

When the mixing step appears, it is needed to mix the two sequences to achieve a 
union of DNA sequences. In the mixing step, it is needed to give some heat to mix 
these. Then annealing appears and in annealing, it is needed to cool this little and 
make a double sequence bond. After annealing the step appears which is melting. In



11.4 Basic Definitions for Heat Calculation in DNA Circuits 221

melting, need to heat the double-strand DNA sequence to make them a single strand 
complementary sequence and this sequence will be used in the DNA logic gate after 
some steps. So, the DNA melting temperature should be known: 

1. Nearest Neighbors 
Depending on the nature of the sequence, one of two methods should be used 
to calculate melting temperature, T. m . Nearest Neighbors and Basic are the two 
methods that are discussed as follows: 

.Tm = �H

A + �S + Rln
(
C
4

) − 273.15 + 16.6log[Na+] (11.7) 

where, 

(a) Tm .= melting temperature in . 
◦C 

(b) . �H = enthalpy change in kcal mol.−1 (accounts for the energy change during 
annealing/melting) 

(c) A . = constant of. −0.0108 kcal K. 
−1mol.−1 (accounts for helix initiation during 

annealing/melting) 
(d) . �S .= entropy change in kcal K. 

−1mol.−1 (accounts for energy unable to do 
work, i.e. disorder) 

(e) R .= gas constant of 0.00199 kcal K. 
−1mol.−1 (constant that scales energy to 

temperature) 
(f) C .= oligonucleotide concentration in M or mol L.−1 (use 0.0000005, i.e. 0.5 

. µM) 
(g) . −273.15.= conversion factor to change the expected temperature in Kelvins 

to . 
◦C 

(h) Na+ .= sodium ion concentration in M or mol L.−1 (use 0.05, i.e. 50 mM) 

This example will demonstrate the manual calculation of the Tm for the following 
sequence: 
5’-AAAAACCCCCGGGGGTTTTT-3’ 

This is the above sequence paired with its reverse complement: 

5’-AAAAACCCCCGGGGGTTTTT-3’ 

3’-TTTTTGGGGGCCCCCAAAAA-5’ 

.Tm = �H

A + �S + Rln
(
C
4

) − 273.15 + 16.6log[Na+]



222 11 Heat Calculation

Fig. 11.8 DNA AND 
operational gate 

. Tm = −185.7 kcal mol−1

−0.0108 kcal K−1. mol−1 + −0.4672 kcal K−1. mol−1

+0.00199 kcal K−1. mol−1 × ln ×
(
0.0000005 mol L−1

4

)

−273.15 + 16.6log[0.05 mol L−1]

T. m = 69.6 . 
◦ C 

2. Basic Method 
A secondary method is used to calculate T. m is the basic method of a modified 
Marmur Doty formula, which is used for oligonucleotides with short sequences 
lengths, (those that are 14 bases or less) [7, 8]. To calculate T.m the modified 
Marmur Doty formula is given as follows: 

T. m = 2(A + T ) + 4(C + G) – 7  

(a) T. m = melting temperature in . 
◦C 

(b) A .= number of adenosine nucleotides in the sequence 
(c) T .= number of thymidine nucleotides in the sequence 
(d) C .= number of cytidine nucleotides in the sequence 
(e) G .= number of guanosine nucleotides in the sequence 
(f) -7 .= correction factor accounting for in solution. 

So, for example, the melting temperature of a DNA sequence in different operational 
DNA gates can be calculated as AND, OR, NOT, NAND, NOR, XOR and XNOR. 

1. Heat Calculation of DNA AND Operational Gate 
Figure 11.8 shows the DNA AND operational gate. Here, ACCTAG = True and 
TGGATC = False. False and True inputs are given, then False output is obtained.



11.4 Basic Definitions for Heat Calculation in DNA Circuits 223

Here, Input 1 = TGGATC 

T.m1 = 2(A + T) + 4(C + G) .− 7 

= . 2(1 + 2) + 4(1 + 2) − 7

= 11.0 . 
◦C 

Again, Input 2 = ACCTAG 

T.m2 = 2(A + T) + 4(C + G) .− 7 

= . 2(1 + 1) + 4(2 + 1) − 7

T.m2 = 9.0 . 
◦C 

Other processes should also be done for finding an output in DNA computing. 
That’s why another generalized process has to be performed within all steps and all 
the following steps are applicable for each tube for performing a DNA operation. 
Preparing, Mixing, and Annealing: Allosteric DNAzyme-based DNA logic 
circuit, described a procedure to make a DNAzyme-based logic circuit. Here, 
All DNA logic gates were formed by annealing twice: firstly, the mixture of the 
inhibitor DNA strands and E6-type DNAzymes in 1. × TAE/ Mg. 2+ buffer (40 mM 
Tris, 20 mM acetic acid, 1 m MEDTA. 2Na and 12.5 mM Mg(OAc). 2, pH 8.0) was  
heated at 95 . 

◦C for  4  min, 65 . 
◦C for 30 min, 50 . ◦C for 30 min, 37 . 

◦C for 30 min, 
22. 

◦C for 30 min, and preserved at 20. 
◦C; and then the substrates were added into 

the annealed mixture and incubated at constant temperature 20 . ◦C for 4 h (total 
6 h for preparing the DNA logic gate). 
Melting, Amplifying, Separating, Extracting, Cutting, Ligating, Substitut-
ing, Marking, and Destroying sequences: After that Logic gates were triggered 
through displacement reaction in 1.× TAE/ Mg2+ buffer (40 mM Tris, 20 mM 
acetic acid, 1 mM EDTA. 2Na, and 12.5 mM Mg (OAc). 2, pH 8.0). The input DNA 
strands were added to a solution containing DNA logic gates and reacted for . >
2 h at 20. 

◦C. Next, the displaced products were stored at 20. 
◦C for native PAGE or 

fluorescence detection. In addition, polyacrylamide gel electrophoresis (PAGE) 
needs 2 h and the PCR process for fluorescence detection needs less than 2 h. 
Detecting and Reading Sequences: Here to describe a specific biochemical pro-
cess briefly which serves as the basis of the DNA computing approach as Poly-
merase Chain Reaction (PCR). Polymerases perform several functions, including 
the repair and duplication of DNA. PCR is a process that quickly amplifies the 
amount of specific DNA molecules in a given solution, using primer extension 
by the polymerase. 
Each cycle of the reaction doubles the quantity of this molecule, leading to an 
exponential growth in the number of sequences. It consists of the following key 
processes:



224 11 Heat Calculation

(a) Initialization: a mixed solution of template, primer, dNTP and enzyme is 
heated to 94. −98 . ◦C for  .1 − 9min to ensure that most of the DNA template 
and primers are denatured; 

(b) Denaturation: heat the solution to 94. −98 . ◦C for 20. −30 s for separation of 
DNA duplexes; 

(c) Annealing: lower the temperature enough (usually between 50 and 64 . ◦C) 
for 20. −40 s for primers to anneal specifically to the ssDNA template; 

(d) Elongation/Extension: raise temperature to optimal elongation temperature 
of Taq or similar DNA polymerase (70. −74. ◦C) for the polymerase adds 
dNTP’s from the direction of 5’ to 3’ that are complementary to the template; 

(e) Final Elongation/Extension: after the last cycle, a 5. −15 min elongation may 
be performed to ensure that any remaining ssDNA is fully extended. 

Steps 2 to 4 are repeated 20. −35 times; fewer cycles results in less product, and 
too many cycles increase the fraction of incomplete and erroneous products. PCR 
is a routine job in the laboratory that can be performed by an apparatus named 
thermal cycler. According to the PCR process, to produce an operational output 
of DNA computation, it needs around 2 h. 
Specific steps with heat for DNA computations are as follows: 

1. Gate operation preparing (98. ◦C–94. ◦C) 
2. Synthesizing (98. ◦C–94. ◦C) 
3. Mixing (95. ◦C–22. ◦C) 
4. Annealing (70. ◦C–20. ◦C) 
5. Melting (Depends on the sequence) 
6. Amplifying 20. ◦C 
7. Separating 
8. Extracting 
9. Cutting 
10. Ligating 
11. Substituting 
12. Marking 
13. Destroying 
14. Detecting and Reading (98. ◦C–25. ◦C) 

So, in DNA AND gate, the overall maximum required heat is given below. 
= (98+98+95+70+11+20+98) . ◦C, 
= 490 . 

◦C, 

And the minimum required heat = (94+94+22+20+9+20+25) . ◦C, 

= 284 . 
◦C. 

Again, in DNA AND gate, all the processes occur in the test tube after mixing is 
completed. Here sometimes, need to keep the temperature high, and sometimes 
it needs to keep the temperature low for several steps. So, it needs to keep the 
temperature at a maximum of 94–98. ◦C. When DNA gate logic operation occurs, 



11.4 Basic Definitions for Heat Calculation in DNA Circuits 225 

Fig. 11.9 DNA OR 
operational gate 

it needs to keep the temperature around 20. ◦C and at detection time, it needs to 
keep it at 25. ◦C. 

2. Heat Calculation of DNA OR Operational Gate 
Figure 11.9 shows the DNA OR operational gate. Here, ACCTAG = True and 
TGGATC = False. In this case, False and True inputs are given, and the True 
output is obtained. 

Here, Input 1 = TGGATC 

T.m1 = 2(A + T) + 4(C + G) .− 7 

= . 2(1 + 2) + 4(1 + 2) − 7 

= 11.0 . 
◦C 

Again, 

Input 2 = ACCTAG 

= 2(A + T) + 4(C + G) .− 7 

= . 2(1 + 1) + 4(2 + 1) − 7 

T.m2 = 9.0 . 
◦C 



226 11 Heat Calculation 

Specific steps with heat for DNA computations are given below. 

1. Gate operation preparing (98. ◦C–94. ◦C) 
2. Synthesizing (98. ◦C–94. ◦C) 
3. Mixing (95. ◦C–22. ◦C) 
4. Annealing (70. ◦C–20. ◦C) 
5. Melting (Depends on the sequence) 
6. Amplifying 20. ◦C 
7. Separating 
8. Extracting 
9. Cutting 
10. Ligating 
11. Substituting 
12. Marking 
13. Destroying 
14. Detecting and Reading (98. ◦C–25. ◦C) 

So, in DNA OR gate, the overall maximum required heat is 
= (98+98+95+70+11+20+98) . ◦C, 

= 490 . 
◦C, 

And the minimum required heat = (94+94+22+20+9+20+25) . ◦C, 

= 284 . 
◦C 

Again, in DNA OR gate, all the processes happening in the test tube after mixing 
are completed. Here sometimes it needs to keep the temperature high and some-
times needs to keep the temperature low for several steps. So, it needs to keep the 
temperature at a maximum of 94–98. ◦C. When DNA gate logic operation occurs, 
it needs to keep the temperature around 20. ◦C and at detection time it is as 25. ◦C. 

3. Heat Calculation of DNA NOT Operational Gate 
Figure 11.10 shows the DNA NOT gate where one input TGGATC (False) is 
given and the obtained output is ACCTAG (True). 

Here, Input DNA sequence = TGGATC 

So, Melting temperature , T. m = 2(A + T) + 4(C + G) .− 7 

= . 2(1 + 2) + 4(1 + 2) − 7 

= 11.0 . 
◦C 



11.4 Basic Definitions for Heat Calculation in DNA Circuits 227 

Fig. 11.10 DNA NOT 
operational gate 

Specific steps with heat for DNA computation are given below. 

1. Gate operation preparing (98. ◦C–94. ◦C) 
2. Synthesizing (98. ◦C–94. ◦C) 
3. Mixing (95. ◦C–22. ◦C) 
4. Annealing (70. ◦C–20. ◦C) 
5. Melting (Depends on the sequence) 
6. Amplifying 20. ◦C 
7. Separating 
8. Extracting 
9. Cutting 
10. Ligating 
11. Substituting 
12. Marking 
13. Destroying 
14. Detecting and Reading (98. ◦C–25. ◦C) 

So, in DNA NOT gate, the overall maximum required heat is 
= (98+98+95+70+11+20+98) . ◦C, 

= 490 . 
◦C, 

And the minimum required heat = (94+94+22+20+11+20+25) . ◦C, 

= 286 . 
◦C. 

Again, in DNA NOT operational gate, all the processes are done in the test tube 
after mixing are completed. Here sometimes it needs to keep the temperature 



228 11 Heat Calculation 

Fig. 11.11 DNA XOR gate 

high and sometimes it needs to keep the temperature low for several steps. So, it 
needs to keep the temperature at a maximum of 94–98. ◦C. When DNA gate logic 
operation occurs, it needs to keep the temperature around 20. ◦C and at detection 
time it should be 25. ◦C. 

4. Heat Calculation of DNA XOR Gate 
Figure 11.11 shows the DNA XOR gate and here also two inputs are given and 
one output is obtained by maintaining the truth table of XOR operation. 
Again, Input. 1 = ACCTAG 
So, T.m1 = 2(A + T) + 4(C + G) .− 7 

. = 2(1 + 1) + 4(2 + 1) − 7 

= 9.0 . 
◦C 

Again, Input. 2 = ACCTAG 

So, T.m2 = 2(A + T) + 4(C + G) .− 7 

. = 2(1 + 1) + 4(2 + 1) − 7 

= 9.0 . 
◦C 



11.5 Heat Calculation in DNA Circuits 229 

Specific steps with heat for DNA computations are given below. 

1. Gate operation preparing (98. ◦C–94. ◦C) 
2. Synthesising (98. ◦C–94. ◦C) 
3. Mixing (95. ◦C–22. ◦C) 
4. Annealing (70. ◦C–20. ◦C) 
5. Melting (Depends on the sequence) 
6. Amplifying 20. ◦C 
7. Separating 
8. Extracting 
9. Cutting 
10. Ligating 
11. Substituting 
12. Marking 
13. Destroying 
14. Detecting and Reading (98. ◦C–25. ◦C) 

So, in DNA XOR gate, the overall maximum required heat is 
= (98+98+95+70+11+20+98) . ◦C, 

= 490 . 
◦C, 

And the minimum required heat = (94+94+22+20+9+20+25) . ◦C, 

Again, in the DNA XOR gate, all the processes happening in the test tube after 
mixing are completed. Here in specific cases, it is needed to keep the temperature 
high and sometimes the temperature should be low for several steps. So, it is 
needed to keep the temperature at a maximum of 94–98. ◦C. When DNA gate 
logic operation occurs, it needs to keep the temperature around 20. ◦C and at 
detection time it is as 25. ◦C. 

11.5 Heat Calculation in DNA Circuits 

This subsection is going to describe some DNA operational circuits to calculate it’s 
performing Heat in an approximate value based on the theory described in Sect. 11.5. 

11.5.1 DNA Full Subtractor 

A full subtractor is a combinational circuit that performs subtraction of two bits, 
one is minuend and the other is subtrahend, taking into account the borrow of the 
previous adjacent lower minuend bit. This circuit has three inputs and two outputs. 
The three inputs A, B, and B. in , denote the minuend, subtrahend, and previous borrow, 
respectively. The two outputs, D and B.out represent the difference and output borrows, 



230 11 Heat Calculation 

respectively. To create a full subtractor, one OR, two AND, two NOT, and two XOR 
gates are required. 

Here, three input sequences are as follows: 

1. B.in  = TGGATC 
2. A = ACCTAG 
3. B = ACCTAG. 

Calculation of the melting temperature of a specific DNA sequence is as follows: 
For Input,.1, B. in  = TGGATC 
T.m (Bin) = 2(A + T) + 4(C + G) .− 7 
. = 2(1 + 2) + 4(1 + 2) − 7 
= 11.0 . 

◦C 
Again, Input. 2 and Input. 3, A = B = ACCTAG  
So, T.m ( A or  B) = 2(A + T) + 4(C + G) .− 7 
= . 2(2 + 1) + 4(2 + 1) − 7 
= 11.0. ◦C 
Specific steps with heat for DNA full subtractor (for each tube) are given below. 

1. Gate operation preparing (98. ◦C–94. ◦C) 
2. Synthesizing (98. ◦C–94. ◦C) 
3. Mixing (95. ◦C–22. ◦C) 
4. Annealing (70. ◦C–20. ◦C) 
5. Melting (Depends on the sequence) 
6. Amplifying 20. ◦C 
7. Separating 
8. Extracting 
9. Cutting 
10. Ligating 
11. Substituting 
12. Marking 
13. Destroying 
14. Detecting and Reading (98. ◦C–25. ◦C) 

So, in DNA full subtractor, the overall maximum required heat is 
= (98+98+95+70+11+20+98) . ◦C, 
= 490 . 

◦C, 
And the minimum required heat = (94+94+22+20+11+20+25) . ◦C, 
= 286 . 

◦C. 
Again, in a specific basic DNA gate, all the processes happening in the test tube after 
mixing are completed. Here in specific cases, it is needed to keep the temperature high 
and sometimes the temperature should be low for several steps. So, the temperature 
should be kept at a maximum of 94–98. ◦C. When DNA gate logic operation occurs, 
it needs to keep the temperature around 20. ◦C and at detection time it needs to keep 
as 25. ◦C. Figure 11.12 shows the DNA circuit of the full subtractor. 



11.5 Heat Calculation in DNA Circuits 231 

Fig. 11.12 DNA full subtractor circuit 

11.5.2 DNA Full Adder 

Full Adder is the adder that adds three inputs and produces two outputs. The first 
two inputs are A and B and the third input is an input carry as C-IN. The output 
carry is designated as C.out and the normal output is designated as S which is SUM. 
A full adder logic is designed in such a manner that can take eight inputs together 
to create a byte-wide adder and cascade the carry bit from one adder to another. To 
create a Full Adder, one OR, two NAND, one XOR, and two NOT gates are required. 
Figure 11.13 shows the DNA circuit of the Full Adder. 
Here, three input sequences are as follows: 

1. A. 0 = TGGATC 
2. A. 1 = TGGATC 
3. A. 2 = ACCTAG. 



232 11 Heat Calculation 

Fig. 11.13 DNA full adder circuit 

Calculation of the Melting temperature of a specific DNA sequence is as follows: 
For Inputs. , A. 0 and A. 1 = TGGATC 
T.m ( A0 or A1) = 2(A + T) + 4(C + G) .− 7 
. = 2(1 + 2) + 4(1 + 2) − 7 
= 11.0 . 

◦C 
Again, Input, A. 3 = ACCTAG 
So, T.m ( A3) = 2(A + T) + 4(C + G) .− 7 
= . 2(2 + 1) + 4(2 + 1) − 7 
= 11.0 . 

◦C 



11.5 Heat Calculation in DNA Circuits 233 

Specific steps with heat for DNA full Adder (for each tube) are as follows: 

1. Gate operation preparing (98. ◦C–94. ◦C) 
2. Synthesizing (98. ◦C–94. ◦C) 
3. Mixing (95. ◦C–22. ◦C) 
4. Annealing (70. ◦C–20. ◦C) 
5. Melting (Depends on the sequence) 
6. Amplifying 20. ◦C 
7. Separating 
8. Extracting 
9. Cutting 
10. Ligating 
11. Substituting 
12. Marking 
13. Destroying 
14. Detecting and Reading (98. ◦C–25. ◦C) 

So, in DNA full adder, the overall maximum required heat 
= (98+98+95+70+11+20+98) . ◦C, 
= 490 . 

◦C, 
And the minimum required heat = (94+94+22+20+11+20+25) . ◦C, 
= 286 . 

◦C. 

Again, in a specific basic DNA gate, all the processes happening in the test tube after 
mixing are completed. Here in specific cases, it is needed to keep the temperature 
high and sometimes the temperature should be low for several steps. So, it has to 
keep the temperature at a maximum of 94–98. ◦C. When DNA gate logic operation 
occurs, the temperature should be around 20. ◦C and at detection time, it needs to 
keep it as 25. ◦C. 

11.5.3 DNA Multiplication Circuit 

The multiplicand and multiplier can be of various bit sizes. The product’s bit size 
depends on the bit size of the multiplicand and multiplier. The bit size of the product 
is equal to the sum of the bit size of the multiplier multiplicand. To create a DNA 
Multiplication circuit, six DNA NAND, two DNA XOR, and 6 DNA NOT gates are 
required. Figure 11.14 describes the DNA circuit of the 2-molecular multiplication. 

Here, four input sequences are as follows: 

1. A. 0 = ACCTAG 
2. A. 1 = TGGATC 
3. B. 0 = TGGATC 
4. B.1 = ACCTAG. 



234 11 Heat Calculation 

Fig. 11.14 DNA multiplier circuit 

Calculation of the melting temperature of a specific DNA sequence is as follows: 
For Inputs. , A. 0 and B. 1 = ACCTAG 
T.m ( A0 or B1) = 2(A + T) + 4(C + G) .− 7 
= . 2(2 + 1) + 4(2 + 1) − 7 
= 11.0 . 

◦C. 

Again, Inputs, A. 1 and B. 0 = TGGATC 
So, T.m (A3) = 2(A + T) + 4(C + G) .− 7 
. = 2(1 + 2) + 4(1 + 2) − 7 
= 11.0 . 

◦C 



11.6 Heat Calculation in Quantum-DNA Circuits 235 

Specific steps with heat for DNA full Adder (for each tube) are as follows: 

1. Gate operation preparing (98. ◦C–94. ◦C) 
2. Synthesizing (98. ◦C–94. ◦C) 
3. Mixing (95. ◦C–22. ◦C) 
4. Annealing (70. ◦C–20. ◦C) 
5. Melting (Depends on the sequence) 
6. Amplifying 20. ◦C 
7. Separating 
8. Extracting 
9. Cutting 
10. Ligating 
11. Substituting 
12. Marking 
13. Destroying 
14. Detecting and Reading (98. ◦C–25. ◦C) 

So, in DNA multiplier, the overall maximum required heat is 
= (98+98+95+70+11+20+98) . ◦C, 
= 490 . 

◦C, 
And the minimum required heat = (94+94+22+20+11+20+25) . ◦C, 
= 286 . 

◦C. 

Again, in a specific basic DNA gate, all the processes ocurring in the test tube after 
mixing are completed. Here in specific cases, the temperature should be kept high 
and sometimes low for several steps. So, the temperature must be at a maximum of 
94–98. ◦C. When DNA gate logic operation occurs, it needs to keep the temperature 
around 20. ◦C and at detection time, it needs to keep it at 25. ◦C. 

11.6 Heat Calculation in Quantum-DNA Circuits 

According to quantum computing, quantum computation is faster than classical com-
putation systems. Quantum computers are also more powerful than supercomputers 
in terms of computing. They are 1000 times faster than regular computers and super-
computers at processing data. Quantum computers can execute calculations that 
would take a regular computer 1000 years to complete in a matter of seconds. On the 
other hand, the use of DNA strands to compute has led to high parallel computation 
that makes up for the slow processing of the chip. Memory space required by DNA 
is around 1 molecule per cubic nanometer which is much less when compared to 
regular storage systems Consumption of power is almost nil as the chemical bonds 
in DNA produce energy to build or repair new strands. So, to find a super faster 
computation system with a huge memory, a Quantum-DNA computation system can 
be developed. This Quantum-DNA computation system can merge all advantages of 
quantum computing and DNA computing. 



236 11 Heat Calculation 

In a Quantum-DNA computing system, input will be received as a qubit and after 
performing in a certain number of quantum operational gates these qubits will be 
turned into DNA sequences by NMR relaxation. 

11.6.1 Quantum-DNA Full Adder 

Full Adder is the adder that adds three inputs and produces two outputs. The first 
two inputs are A and B and the third input is an input carry as C. in . The output carry 
is designated as C.out and the normal output is designated as S which is SUM. A full 
adder logic is designed in such a manner that can take eight inputs together to create a 
byte-wide adder and cascade the carry bit from one adder to another. To create a Full 
Adder, one OR, two AND, and two XOR gates are required. Figure 11.15 describes 
the Quantum-DNA circuit of the Full Adder. From the Figure, it is assumed that three 
quantum operational gates and two DNA operational gates are required to find the 
expected output from Quantum-DNA Full adder. 

Fig. 11.15 Quantum-DNA full adder at room temperature 



11.6 Heat Calculation in Quantum-DNA Circuits 237 

A quantum-DNA full adder has five qubits (considering 2 ancilla qubits and 3 
input qubits) quantum operation. The output qubit from the quantum operation will 
be converted into a DNA sequence by using NMR relaxation later. The following 
formula will be used to compute the amount of heat generated by the quantum 
process. 

. 
dSth  (E) 

dE  
= 

n 

T 

It is known that, for N-qubit gate, S. th  (E, N) = N (Kb ln 2) S (E/N) 

. = −kB
ε − E/N

ε
ln

ε − E/N

ε
− kB 

E/N

ε
ln  

E/N

ε

The quantum-DNA full adder has five qubits as shown in the figure. So, N .= 5. 
Thus, S.th  . (E, N ) = 1.984 × 10−18 

T = . 
dE  x  N  
dSth  (E) 

. = 
5.7051 × 10−16 × 5 

1.984 × 10−18 

= 1436.49 K 

Thus, the produced heat from Quantum-DNA full adder is 1436.49 K. 
Here, at most, the two DNA sequences for the DNA operational gate in the 

Quantum-DNA full adder are as follows: 

1. TGGATC 
2. ACCTAG 

To calculate the melting temperature of a specific DNA sequence, it is as follows: 
For TGGATC 
T. m = 2(A + T) + 4(C + G) .− 7 
. = 2(1 + 2) + 4(1 + 2) − 7 
= 11.0 . 

◦C 
Again, For ACCTAG 
So, T. m = 2(A + T) + 4(C + G) .− 7 
. = 2(2 + 1) + 4(2 + 1) − 7 
= 11.0 . 

◦C 



238 11 Heat Calculation 

Specific steps with heat for Quantum-DNA Full Adder in DNA operation (for each 
tube) are as follows: 

1. Gate operation preparing (98. ◦C–94. ◦C) 
2. Synthesizing (98. ◦C–94. ◦C) 
3. Mixing (95. ◦C–22. ◦C) 
4. Annealing (70. ◦C–20. ◦C) 
5. Melting (Depends on the sequence) 
6. Amplifying 20. ◦C 
7. Separating 
8. Extracting 
9. Cutting 
10. Ligating 
11. Substituting 
12. Marking 
13. Destroying 
14. Detecting and Reading (98. ◦C–25. ◦C) 

So, in DNA operation, the overall maximum required heat is 
= (98+98+95+70+11+20+98) . ◦C, 
= 490 . 

◦C, 
And the minimum required heat = (94+94+22+20+11+20+25) . ◦C, 
= 286 . 

◦C. 

Again, in a specific basic DNA gate, all the processes ocurring in the test tube 
after mixing are completed. Here in specific cases, the temperature is high and low 
for several steps. So, it is needed to keep the temperature at a maximum of 94–98. ◦C. 
When DNA gate logic operation occurs, the temperature should be around 20. ◦C and 
at the detection time, it needs to keep it as 25. ◦C. 

11.7 Heat Calculation in DNA-Quantum Circuits 

Quantum computation, according to quantum computing, is faster than traditional 
processing systems. Quantum computers are also more powerful in terms of com-
putation than supercomputers. They process data 1000 times faster than normal 
computers and supercomputers. Quantum computers can perform computations in a 
fraction of a second that would take a traditional computer 1000 years to finish. The 
usage of DNA strands to calculate, on the other hand, has resulted in high parallel 
computation, which compensates for the chip’s slow processing. When compared to 
traditional storage systems, DNA requires just about 1 bit per cubic nanometer of 
memory space. The chemical interactions in DNA provide energy to make or repair 
new strands, therefore there is essentially no power use. As a result, a Quantum-DNA 
computation system can be created to find a super-fast computation system with a lot 
of memory. This quantum-DNA computation device combines the benefits of both 
quantum and DNA computing. 

In a DNA-Quantum computing system, input will be received in DNA sequences 
and after performing in a certain number of DNA operational gates these DNA 
sequences will be turned into quantum qubits by the NMR process. 



11.7 Heat Calculation in DNA-Quantum Circuits 239 

11.7.1 DNA-Quantum Full Adder 

Full Adder is the adder that adds three inputs and produces two outputs. The first 
two inputs are A and B and the third input is an input carry as C. in . The output carry 
is designated as C.out and the normal output is designated as S which is SUM. A full 
adder logic is designed in such a manner that can take eight inputs together to create 
a byte-wide adder and cascade the carry bit from one adder to another. To create a 
Full Adder, one OR, two AND, and two XOR gates are required. 

Figure 11.16 illustrates the DNA-Quantum circuit of the Full Adder and from the 
figure, it is assumed that two DNA operational gates and three quantum operational 
gates are required to find the expected output from the DNA-Quantum Full adder. 

Here, at most, the two DNA sequences for the DNA operational gate in the DNA-
Quantum Full adder are as follows: 

1. TGGATC 
2. ACCTAG 

To calculate the melting temperature of a specific DNA sequence is as follows: 
For TGGATC 
T. m = 2(A + T) + 4(C + G) .− 7 
. = 2(1 + 2) + 4(1 + 2) − 7 
= 11.0 . 

◦C 
Again, For ACCTAG 
So, T. m = 2(A + T) + 4(C + G) .− 7 
. = 2(2 + 1) + 4(2 + 1) − 7 
= 11.0 . 

◦C 
Specific steps with heat for DNA-Quantum Full Adder in DNA operation (for 

each tube) are as follows: 

1. Gate operation preparing (98. ◦C–94. ◦C) 
2. Synthesizing (98. ◦C–94. ◦C) 
3. Mixing (95. ◦C–22. ◦C) 
4. Annealing (70. ◦C–20. ◦C) 
5. Melting (Depends on the sequence) 
6. Amplifying 20. ◦C 
7. Separating 
8. Extracting 
9. Cutting 
10. Ligating 
11. Substituting 
12. Marking 
13. Destroying 
14. Detecting and Reading (98. ◦C–25. ◦C) 



240 11 Heat Calculation 

Fig. 11.16 DNA-Quantum full adder at room temperature 

So, in DNA Full subtractor, the overall maximum required heat is 
= (98+98+95+70+11+20+98) . ◦C, 
= 490 . 

◦C, 
And the minimum required heat = (94+94+22+20+11+20+25) . ◦C, 
= 286 . 

◦C. 
Again, in a specific basic DNA gate, all the processes ocurring in the test tube after 
mixing are completed. Here in specific cases, it is needed to keep the temperature high 
and sometimes the temperature should be low for several steps. So, the temperature 
must be at a maximum of 94–98. ◦C. When DNA gate logic operation occurs, it is 
needed to keep the temperature around 20. ◦C and at detection time and it needs to 
keep as 25. ◦C. 

Further, a DNA-Quantum Full Adder is 5 qubits (considering 1 ancilla qubit and 
4 input qubits) quantum operation. The output of a DNA operational gate is a DNA 



11.8 Applications 241 

sequence, which is converted into a quantum qubit after processing through the NMR 
at room temperature. 

The produced heat generated from quantum operation in the DNA-Quantum Full 
Adder will be calculated using the following formula: 

. 
dSth  (E) 

dE  
= 

n 

T 

It is known that, for N-qubit gate, S. th  (E, N) = N (Kb ln 2) S (E/N) 

. = −kB
ε − E/N

ε
ln

ε − E/N

ε
− kB 

E/N

ε
ln  

E/N

ε

The DNA-quantum full adder has five qubits as shown in the figure. So, N = 5. 
Thus, S.th  . (E, N ) = 1.984 × 10−18 

T = . 
dE  x  N  
dSth  (E) 

. = 
5.7051 × 10−16 × 5 

1.984 × 10−18 

= 1436.49 K 

Thus, the produced heat from DNA-Quantum full adder is 1436.49 K. 
= 11.63 . 

◦C, 
and the minimum required heat = (94+94+22+20+11+20+25) . ◦C, 
= 286 . 

◦C. 

Again, in a specific basic DNA gate, all the processes are done in the test tube after 
mixing are completed. Here in specific cases, the temperature needs to keep high 
and sometimes low for several steps. So, it is needed to keep the temperature at a 
maximum of 94–98. ◦C. When DNA gate logic operation occurs, it is needed need 
to keep the temperature around 20. ◦C and at detection time and it needs to keep at 
25. ◦C. 

11.8 Applications 

This section describes some real-life applications of DNA and Quantum operation 
where it is used and provides superior performance against classical computing 
systems. In the case of different applications, classical computing systems might fail 
but Quantum and DNA computing systems can show their capability. 

Traveling salesman problem: The first theory of DNA computation was proposed 
by Leonard Adleman in 1994. He put his experimental theory to the test with a 
seven-point Hamiltonian path problem also called the traveling salesman problem. 
The salesman in this problem needs to find the shortest path between seven cities 



242 11 Heat Calculation 

whose distances are known in such a way that he crosses no city twice and returns 
to the original city. Adleman represented each city with a short DNA sequence with 
about 20 bases and a complementary strand with 20 bases as the street between the 
cities. All the fragments are capable of linking with each other. When the fragments 
were put in a tube and mixed, the natural bonding tendencies of the DNA created 
109 formations or solutions in less than a second. Not all were correct and he took 
a week to extrapolate and filter out the shortest path through various techniques. 
Though this solution was not ideal, this demonstration opened floodgates to a wide 
range of possibilities and applications. 

Security: Deploying DNA algorithms in cryptography to build an intrusion detection 
model is the most recent development. The ability to store 108 terabytes of data in 
1 g of DNA has led to the potential of holding a huge one-time pad. Another example 
is DNA steganography, in which a novel method was used to hide the messages 
in a microdot. Instead of the traditional binary encoding, each letter was denoted 
by three chemical bases i.e. the letter A was encoded by CGA. These messages 
are then encoded into DNA sequences and concealed by mixing them in a tube 
with a large amount of sonicated random human DNA. This led to the formation of 
microdots, which were then decoded by the receiver with appropriate primers (short 
sequence with complementary bases). However, such encryption techniques have 
posed problems. The lack of a theoretical basis to explain the implementation and 
come up with good schemes seem to be a challenge. These are also expensive to 
apply, and analyze, and it requires modern infrastructure. 

Artificial intelligence and machine learning: Artificial intelligence and machine 
learning are some of the prominent areas right now, as the emerging technologies 
have penetrated almost every aspect of humans’ lives. However, as the number of 
applications increases, it becomes a challenging task for traditional computers to 
match up the accuracy and speed. And that’s where quantum computing can help in 
processing complex problems in very little time, which would have taken traditional 
computers thousands of years. 

11.9 Summary 

Quantum computing focuses on speedy technology based on quantum-theoretical 
principles, which is the behavior of energy and matter of a qubit. A combination of 
qubits is used to perform any specific task in quantum computing. Quantum com-
puters represent a significant advancement in computing capability, with enormous 
performance benefits for specific use cases. The ability of qubits to be in several 
states at the same time gives the quantum computer a lot of computing capabilities 
and it is much faster than classical bitwise computing. 

Furthermore, DNA computing uses biological molecules to do computations. The 
four-character genetic alphabet (A-adenine, G-guanine, C-cytosine, and T-thymine) 
is used in DNA computing. The input of any DNA operation can be represented by 



11.9 Summary 243 

DNA molecules with specific sequences. The instructions are carried out by labora-
tory operations on the molecules, and the result is defined as some property of the 
final set of molecules. DNA computing promises meaningful linkages between com-
puters and life systems, as well as massively parallel computations. DNA computing 
can carry out millions of operations at the same time. 

To the advanced computations, it is possible to make or use DNA-Quantum com-
puting and Quantum-DNA computing systems, which will merge all the advantages 
of both DNA computing and Quantum computing. 

Heat is an important property of any operation for computation. It is found that, in 
quantum computing operation, much heat is produced by circuits, which is dependent 
on the number of qubits in the operational circuit. On the other hand, DNA computing 
needs heat in the test tube to execute the operation. Its different stage needs different 
amounts of time and heat, which are highlighted in this chapter. In addition, the 
produced heat of quantum computing can be used in the DNA computing operation 
by using some heat transfer nanotubes. 



Chapter 12 
Speed Calculation 

12.1 Introduction 

DNA computing is a kind of natural computing that uses the molecular characteristics 
of DNA to conduct logical and arithmetic operations instead of typical carbon/silicon 
chips. The four-character genetic alphabets (A-adenine, G-guanine, C-cytosine, and 
T-thymine) are used in DNA computing instead of the binary digits (1 and 0) utilized 
by standard computers. This enables massively parallel computation, making it pos-
sible to answer difficult mathematical equations or problems in a fraction of the time. 
As a result, computation is far more efficient with a large volume of self-replicating 
DNA than with a standard computer, which would require a lot more hardware. 
Information or data will now be kept in the form of the bases A, T, G, and C, rather 
than binary digits. The capacity to generate short DNA sequences artificially allows 
these sequences to be used as inputs for algorithms. This is possible due to the abil-
ity to create small DNA molecules with any arbitrary sequence. The input of any 
DNA operation can be represented by DNA molecules with specific sequences. The 
instructions are carried out by laboratory operations on the molecules, and the result 
is defined as some property of the final set of molecules. DNA computing makes 
significant and meaningful linkages between computers and life systems, as well 
as massively parallel computations. DNA computing can also carry out millions of 
operations at the same time. 

On the other hand, Quantum computing is a field of study that focuses on the cre-
ation of computer-based technologies based on quantum-theoretical principles. On 
the quantum (atomic and subatomic) level, quantum theory describes the nature and 
the behavior of energy and matter. To execute certain computational tasks, quantum 
computing employs a combination of qubits. All of these are done at a far higher rate 
than their traditional computing equipment. Quantum computers represent a signifi-
cant advancement in computing capability, with enormous performance benefits for 
specific use cases. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9_12 

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5349-9_12&domain=pdf
https://doi.org/10.1007/978-981-97-5349-9_12
https://doi.org/10.1007/978-981-97-5349-9_12
https://doi.org/10.1007/978-981-97-5349-9_12
https://doi.org/10.1007/978-981-97-5349-9_12
https://doi.org/10.1007/978-981-97-5349-9_12
https://doi.org/10.1007/978-981-97-5349-9_12
https://doi.org/10.1007/978-981-97-5349-9_12
https://doi.org/10.1007/978-981-97-5349-9_12
https://doi.org/10.1007/978-981-97-5349-9_12
https://doi.org/10.1007/978-981-97-5349-9_12
https://doi.org/10.1007/978-981-97-5349-9_12


246 12 Speed Calculation

Besides the accuracy of a system, time or speed is a metric that can be used to 
measure the performance of a system. This chapter will describe how to calculate 
speed or consumed time for different operations in Quantum, DNA, Quantum-DNA, 
and DNA-Quantum computation systems. 

12.2 Speed Calculation for Quantum Operations 

Researchers have proposed the theory and formula to calculate the average required 
operational time in any quantum computation. Numerous researchers have also 
applied it in their work and research studies. The average computation time needed 
for an operation is calculated by Eq. 12.1. 

.τ = h

4E
(12.1) 

where. τ is the required operational time, h is Planck’s constant, and E is the quantum 
mechanical average energy of the performing system. It has also shown that the 
minimum operation time of any digital logic gate in quantum computation is given 
below: 

.τ = h

4E

(
1 + 2

θ

π

)
(12.2) 

Here,. τ is the required operational time, h is the plank’s constant, E is the quantum 
mechanical average energy of the performing system, and. θ is the phase shift modulo 
. π . It considers any basic quantum gate that complements the state of a qubit and then 
adds to it an arbitrary phase shift. 

Numerous researchers have noted that any basic quantum operation needs some 
basic amount of time which is tabulated in Table 12.1. It describes that a single 
gate operation as NOT needs 1 . µs and a double qubit gate as CNOT, V, and V. +
needs approximately 10 . µs. Sometimes, one output of a gate operation in quantum 
computting can be needed in another gate operation to perform. In that case, one 
needs a movement time of approximately 20. µs, and in the future, it can be required 
more or less than 10 . µs. 

As a basic quantum operational gate is composed of a single or double qubit gate, 
it is easy to calculate the required operational time for a quantum operation by using 
the information provided in Table 12.1. 

Now, basic quantum operational time will be calculated in their operational gates 
like AND, OR, XOR, NAND, NOR, and XNOR quantum operational gates. These 
quantum operational gates are prepared with quantum gates as NOT, CNOT, V. +, 
and V.



12.2 Speed Calculation for Quantum Operations 247

Table 12.1 Execution times for basic quantum gate operations 

Operations Time (. µs) now (future) 

Single qubit gate 1 (1)  

Double qubit gate 10 (10) 

Movement 20 (10) 

Fig. 12.1 Quantum AND operation circuit 

1. Speed Calculation for Quantum AND Operation 

Figure 12.1 shows the quantum AND gate operation, which is nothing but a circuit 
that is composed of four quantum gates (CNOT, V, and V. +). It has three lines to 
the output, where only the last one can provide the expected output (represented 
as |Q.> in Fig. 12.1 as AND operations do. 
The CNOT (1) and V (3) quantum gates can operate in parallel in this operational 
circuit. So, the required operational time for both of them is 10 . µs. 
The V.+ (4) gate operates sequentially and its input depends on the output of 
CNOT (1) and V (2) quantum gates. So, the required operational time for V. + (4) 
gate is 10 . µs. 
Again, the V (2) gate operates sequentially and its input depends on the input A0 
and output of the V.+ (4) quantum gate. So, the required operational time for V 
(2) gate is 10 . µs. 
So, the total required time for AND operation. = (Operational time for CNOT (1) 
or V (3) gate .+ Operational time for V.+ (4) gate .+ Operational time for V (2) 
gate) 
.= (10+.10+.10) . µs 
.= 30 . µs. 
Thus, the total required operational time for Quantum AND operation is 30 . µs. 

2. Speed Calculation for Quantum OR Operation 

Figure 12.2 represents the quantum OR gate operation, which is a circuit that is 
composed of four quantum gates (CNOT and V). It has three lines to the output,



248 12 Speed Calculation

Fig. 12.2 Quantum OR operation circuit 

but only the final one, like OR operations do, can deliver the desired result. 
The CNOT (1) and V (3) quantum gates can operate in parallel in this operational 
circuit. So, the required operational time for both of them is 10 . µs. 
The V (4) gate operates sequentially and its input depends on the output of CNOT 
(1) and V (2) quantum gates. So, the required operational time for the V (4) gate 
is 10 . µs. 
Again, the V (2) gate operates sequentially and its input depends on the input A0 
and output of the V (4) quantum gate. So, the required operational time for the V 
(2) gate is 10 . µs. 
So, the total required time for OR operation. = (Operational time for CNOT (1) or 
V (3)  gate .+ Operational time for V (4) gate .+ Operational time for V (2) gate) 
.= (10 .+ 10 .+ 10) . µs 
.= 30 . µs. 
Thus, the total required operational time for Quantum OR operation is 30 . µs. 

3. Speed Calculation for Quantum XOR Operation 

Figure 12.3 shows the quantum XOR or Exclusive OR or Ex-OR gate operation, 
which is a circuit that is composed of one basic Quantum gate (CNOT). It has 
two lines to the output, but only the final one with XOR operations, will deliver 
the anticipated result (as shown in Fig. 12.3). 
The total required time for XOR operation depends on the operational time of the 
double qubits CNOT gate. 
So, the required time for XOR operation is 10 . µs. 

4. Speed Calculation for Quantum NAND Operation 

Figure 12.4 describes Quantum NAND gate operation, which is nothing but a 
circuit that is composed of four Quantum gates (CNOT, V. +, and V). It has three 
lines to the output, but only the final one with NAND operations, can provide the 
expected result as shown in Fig. 12.4. 
The CNOT (1) and V.+ (3) quantum gates can operate in parallel in these oper-



12.2 Speed Calculation for Quantum Operations 249

Fig. 12.3 Quantum XOR operation circuit 

Fig. 12.4 Quantum NAND operation circuit 

ational circuits. So, the required operational time for both of them is .= 10 . µs. 
The V (4) gate operates sequentially and its input depends on the output of CNOT 
(1) and V.+ (3) quantum gates. So, the required operational time for the V (4) 
gate is .= 10 . µs. 
Again, the V.+ (2) gate operates sequentially and its input depends on the input 
A0 and output of V (4) quantum gate. So, the required operational time for the 
V.+ (2) gate is .= 10 . µs. 
So, the total required time for NAND operation .= (Operational time for CNOT 
(1) or V.+ (2) gate .+ Operational time for V (4) gate .+ Operational time for V. +
(2) gate) 
.= (10 .+ 10 .+ 10) . µs 
.= 30 . µs. 
Thus, the total required operational time for Quantum NAND operation is 30. µs. 

5. Speed Calculation for Quantum NOR Operation 

Figure 12.5 describes Quantum NOR gate operation, which is a circuit that is 
composed of four quantum gates (CNOT and V). It has three lines to the output, 
but only the final one, like with NOR operations, it will deliver the desired result 
shown as |Q.> in Fig. 12.5. 
The CNOT (1) and V (3) quantum gates can operate in parallel in this operational



250 12 Speed Calculation

Fig. 12.5 Quantum NOR operation circuit 

circuit. So, the required operational time for both of them is .= 10 . µs. 
The V (4) gate operates sequentially and its input depends on the output of CNOT 
(1) and V (3) quantum gates. So, the required operational time for the V (4) gate 
is .= 10 . µs. 
Again, the V (2) gate operates sequentially and its input depends on the input A0 
and output of the V (4) quantum gate. So, the required operational time for the V 
(2) gate is .= 10 . µs. 
So, the total required time for NOR operation.= (Operational time for CNOT (1) 
or V (3) gate. +Operational time for V (4) gate. +Operational time for V (2) gate) 
.= (10 .+ 10 .+ 10) . µs 
.= 30 . µs. 
Thus, the total required operational time for Quantum NOR operation is 30 . µs. 

6. Speed Calculation for Quantum XNOR Operation 

Figure 12.6 shows the quantum XNOR operation, which is a circuit that is com-
posed of two quantum gates (CNOT and NOT). It has two lines to the output, 
but only the final one, like with XNOR operations, will yield the desired output 
shown as |Q.> in Fig. 12.6. 
The CNOT gate operates sequentially and its input depends on the input of A1 
and A0. So, the required operational time for the CNOT gate is .= 10 . µs. 
Again, the NOT gate operates sequentially and its input depends on the output of 
the CNOT quantum gate. So, the required operational time for the NOT gate is 1 
. µs. 
So, the total required time for XNOR operation .= (Operational time for CNOT 
gate .+ Operational time for NOT gate) 
.= (10 .+ 1) . µs 
.= 11 . µs. 
Thus, the total required operational time for Quantum XNOR operation is 11. µs.



12.2 Speed Calculation for Quantum Operations 251

Fig. 12.6 Quantum XNOR operation circuit 

12.2.1 Speed Calculation in Quantum Operational Circuits 

In this section, the total operational time is going to be calculated for a quantum 
operational circuit. The basic information for calculating the operational time of a 
circuit is provided in the previous section. 

12.2.1.1 Quantum Full Subtractor 

A full subtractor is a combinational circuit which is developed to overcome the 
drawback of the half subtractor circuit. It can take three inputs and after subtracting 
them creates two outputs. Here, A full subtractor is implemented using the quantum 
circuit. To create a full subtractor, two NOT, two XOR, two AND, and an OR gate are 
required. Figure 12.7 depicts the quantum circuit of a full subtractor. A full subtractor 
receives three inputs and produces two outputs containing “D” and “B.out”. To find 
the required performing time of a quantum full subtractor, it is divided into three 

Fig. 12.7 Quantum full subtractor circuit



252 12 Speed Calculation

pipelines as some of the basic quantum gate operations are performed in parallel. 
Three pipelines are as follows: 

1. XOR, XOR 
2. XOR, NOT, AND, OR 
3. NOT, AND, OR. 

It is already perceived that XOR, AND, and OR quantum gate operation needs 10, 
30, and 30 . µs, respectively. And, a single qubit quantum operation as NOT need 
1 . µs. As the second pipeline is the largest pipeline for providing an output of the 
full subtractor, taking it for measuring the total required performing time. Other’s 
quantum basic gate operations will be performed within this time in parallel. 

The required time for a full subtractor is .= (XOR.+ NOT.+ AND.+ OR) . µs. 
where, required time for basic quantum NOT gate .= 1 . µs, 

the required time for basic quantum XOR gate .= 10 . µs, 
the required time for basic quantum AND gate .= 30 . µs. 
the required time for basic quantum OR gate .= 30 . µs. 
The required time for a full subtractor is .= (10 .+ 1 .+ 30 .+ 30) . µs .= 71 . µs. 

12.2.1.2 Quantum Three-Qubit Even Parity Qubit Checker 

A circuit that checks the parity in the receiver is called a Parity Checker. A combined 
circuit or device of parity generators and parity checkers are commonly used in digital 
systems to detect single-qubit errors in the transmitted data. To create a three-qubit 
even parity qubit-checker, three XOR gates are required. Figure 12.8 describes the 
digital and quantum circuits of a three-qubit even parity qubit checker. A three-qubit 
even parity qubit checker receives four inputs and produces one output containing 
“E”. 

Fig. 12.8 Quantum three-qubit even parity qubit checker



12.2 Speed Calculation for Quantum Operations 253

To find the required performing time of Quantum three-qubit even parity qubit 
checker, it is divided into two pipelines as some of the basic quantum gate operations 
are performed in parallel. Two pipelines are as follows: 

1. XOR, XOR 
2. XOR, XOR 

It could be perceived that the quantum XOR gate operation needs 10. µs. As both 
pipelines are the equal pipeline for providing an output of the three-qubit even parity-
qubit checker, any of them is taken for measuring the total required performing time. 
Other quantum basic gate operations will be performed within this time in parallel. 

12.2.1.3 Quantum 2-to-1 Multiplexer 

A multiplexer (MUX) is a device that can receive multiple input signals and synthe-
size a single output signal in a recoverable manner for each input signal. It is also an 
integrated system that usually contains a certain number of data inputs and a single 
output. To create a multiplexer, one NOT, two AND, and an OR gate are required. 
Figure 12.9 describes the quantum multiplexer circuit. A multiplexer receives three 
inputs and produces one output containing “Y”. 

To find the required performing time of a quantum multiplexer, it is divided into 
two pipelines as some of the basic quantum gate operations are performed in parallel. 
Two pipelines are as follows: 

1. NOT, AND, OR 
2. AND, OR 

Fig. 12.9 Quantum multiplexer circuit



254 12 Speed Calculation

It is perceived that AND and OR quantum gate operation needs 30. µs, respectively. 
And, a single qubit quantum operation as NOT need 1. µs. As the first pipeline is the 
largest pipeline for providing an output of the Multiplexer, let’s take it for measuring 
the total required performing time. Other quantum basic gate operations will be 
performed within this time in parallel. 

So, the performing time for full multiplexer will be (NOT.+ AND.+ OR) . µs, 

where the required time for basic quantum NOT gate .= 1 . µs, 
the required time for basic quantum AND gate .= 30 . µs. 
the required time for basic quantum OR gate .= 30 . µs. 
So, the required time for Multiplexer is .= (1 .+ 30 .+ 30) .= 61 . µs. 

12.3 Speed Calculation for DNA Operations 

DNA molecules can be used as information storage media. Usually, DNA sequences 
of around 8–20 base pairs are used to represent bits, and numerous methods have 
been developed to manipulate and evaluate them. To manipulate a wet technology 
to perform computations, one or more of the following techniques are used as com-
putational operators for copying, sorting, splitting, or concatenating the information 
contained within DNA molecules as ligation, hybridization, polymerase chain reac-
tion (PCR), gel electrophoresis, and enzyme reaction. 

Allosteric DNAzyme-based DNA logic circuit, described a procedure to make a 
DNAzyme-based logic circuit. Here, All DNA logic gates were formed by annealing 
twice: firstly, the mixture of the inhibitor DNA strands and E6-type DNAzymes in 1. ×
TAE/ Mg. 2+ buffer (40 mM Tris, 20 mM acetic acid, 1 m MEDTA. 2Na and 12.5 mM 
Mg(OAc). 2, pH 8.0) was heated at 95. 

◦C for  4  min, 65. 
◦C for 30 min, 50. 

◦C for 30 min, 
37 . 

◦C for 30 min, 22 . 
◦C for 30 min, and preserved at 20 . 

◦C; and then the substrates 
were added into the annealed mixture and incubated at constant temperature 20 . ◦C 
for 4 h (total 6 h for preparing the DNA logic gate). 

After that logic gates were triggered through displacement reaction in 1. ×
TAE/ Mg2+ buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA. 2Na, and 12.5 
mM Mg (OAc). 2, pH 8.0). The input DNA strands were added to a solution con-
taining DNA logic gates and reacted for . >2 h at 20. 

◦C. Next, the displaced products 
were stored at 20. 

◦C for native PAGE or fluorescence detection. In addition, polyacry-
lamide gel electrophoresis (PAGE) needs 2 h and the PCR process for fluorescence 
detection needs less than 2 h. 

A specific biochemical process described briefly serves as the basis of the DNA 
computing approach as Polymerase Chain Reaction (PCR). Polymerases perform 
several functions, including the repair and duplication of DNA. PCR is a process that 
quickly amplifies the amount of specific DNA molecules in a given solution, using 
primer extension by the polymerase. Each cycle of the reaction doubles the quantity 
of this molecule, leading to an exponential growth in the number of sequences. It 
consists of the following key processes:



12.4 Speed Calculation in DNA Operational Circuits 255

1. Initialization: a mixed solution of template, primer, dNTP, and the enzyme is 
heated to 94. −98 . ◦C for  1. −9 min to ensure that most of the DNA template and 
primers are denatured; 

2. Denaturation: heat the solution to 94. −98. 
◦C for 20. −30 s for separation of DNA 

duplexes; 
3. Annealing: lower the temperature enough (usually between 50. −64 . ◦C) for 

20. −40 s for primers to anneal specifically to the ssDNA template; 
4. Elongation/Extension: raise temperature to optimal elongation temperature of 

Taq or similar DNA polymerase (70. −74 . ◦C) for the polymerase adds dNTP’s 
from the direction of 5’ to 3’ that are complementary to the template; 

5. Final Elongation/Extension: after the last cycle, a 5. −15 min elongation may be 
performed to ensure that any remaining ssDNA is fully extended. 

Steps 2–4 are repeated 20. −35 times; fewer cycles results in less product, too many 
cycles increase the fraction of incomplete and erroneous products. PCR is a routine 
job in the laboratory that can be performed by an apparatus named a thermal cycler. 
According to the PCR process, to produce an operational output of DNA computation, 
it needs around 2 h. 

So, except for initial preparation and the last phase of fluorescence detection for 
each operation in a particular test tube, it needs more or less than 2 h. 

12.4 Speed Calculation in DNA Operational Circuits 

This subsection is going to describe some DNA circuits to calculate their performing 
time or speed in an approximate value based on the theory described in Sect. 12.3. 

12.4.1 DNA Full Subtractor 

A full subtractor is a combinational circuit that performs two-molecular subtraction, 
one is minuend and the other is subtrahend, taking into account the borrow of the 
previous adjacent lower minuend bit. This circuit has three inputs and two outputs. 
The three inputs A, B, and B. in , denote the minuend, subtrahend, and previous borrow, 
respectively. The two outputs, D and B.out represent the difference and output borrows, 
respectively. To create a full subtractor, one OR, two AND, two NOT, and two XOR 
gates are required. Figure 12.10 describes the DNA circuit of a full subtractor. Here, 
two inputs will be DNA sequences and it also provides two outputs that contains 
DNA sequence. In DNA computing, DNA AND operation will be easy to represent 
by DNA NOT and DNA NAND operation. 

According to Sect. 12.2, it is perceived that any DNA basic gate (i.e. AND, OR, 
NOT, and XOR) operation needs more or less than 2 h to perform. In addition, 6



256 12 Speed Calculation

Fig. 12.10 DNA full subtractor circuit 

h are needed for preparing any DNA basic gate operation and 2 h for fluorescence 
detection which is fixed for any multi-(basic) gate operation. 

As the second pipeline is the largest pipeline for processing input to the output 
of the Full Subtractor, it will be considered to measure the total required operational 
time. The other DNA basic gate operations will be performed within this time in 
parallel. 

So, the required time for four basic gate operations in DNA is 
.= (2 .+ 2 .+ 2 .+ 2) 
.= 8h,  

where the required time for DNA gate (AND, OR, NOT, and XOR) operation needs 
more or less than 2 h. 

The total required time for performing DNA full subtractor the summation of 
initial preparation time, fluorescence detection time, and DNA gate operational time.



12.4 Speed Calculation in DNA Operational Circuits 257

So, the required time for DNA multiplexer operation is 
.= (Basic gate preparation time .+ four basic DNA gate operational time .+ Fluores-
cence detection) 
.= (6 .+ 8 .+ 2) 
.= 16 h (approximately). 

12.4.2 DNA Full Adder 

A full adder is an adder that adds three inputs and produces two outputs. The first 
two inputs are A and B and the third input is an input carry as C. in . The output carry 
is designated as C.out and the normal output is designated as S which is SUM. A 
full-adder logic is designed in such a manner that can take eight inputs together to 
create a byte-wide adder and cascade the carry bit from one adder to another. To 
create a full adder, one OR, two NAND, one XOR, and two NOT gates are required. 
Figure 12.11 depicts the DNA circuit of the full adder. 

To find the required operational time of DNA full adder, it is divided into three 
pipelines as some of the basic DNA gate operations are performed in parallel. Three 
pipelines are as follows: 

1. XOR, XOR 
2. XOR, NAND, NOT, OR 
3. NAND, NOT, OR. 

According to Sect. 12.3, it can be perceived that any DNA basic gate (i.e., AND, 
OR, NOT, and XOR) operation needs more or less than 2 h to perform. In addition, 
6 h are needed for preparing any DNA basic gate operation and 2 h for fluorescence 
detection which is fixed for any multi-(basic) gate operation. 

As the second pipeline is the largest pipeline for processing input to the output of 
the Full Adder, it is taken for measuring the total required operational time. Other 
DNA basic gate operations will be performed within this time in parallel. 

So, the required time for four basic gate operations in DNA is .= (2.+ 2.+ 2.+ 2) 
.= 8h,  

where the required time for DNA gate (NAND, OR, NOT, and XOR) operation needs 
more or less than 2 h. 

The total required time for performing DNA full adder operation is a summation 
of initial preparation time, fluorescence detection time, and DNA gate operational 
time. 

So, the required time for DNA full adder operation is 
.= (Basic gate preparation time.+ Four basic DNA gate operational time.+ Fluores-
cence detection) 
.= (6 .+ 8 .+ 2) h 
.= 16 h (approximately).



258 12 Speed Calculation

Fig. 12.11 DNA full adder circuit 

12.4.3 DNA Multiplication Circuit 

A binary multiplier is a combinational logic circuit or digital device used for multi-
plying two binary numbers. The two numbers are more specifically known as mul-
tiplicand and multiplier and the result is known as a product. The multiplicand and 
multiplier can be of various bit sizes. The product’s bit size depends on the bit size 
of the multiplicand and multiplier. The bit size of the product is equal to the sum 
of the bit size of multiplier and multiplicand. To create a multiplication circuit, six 
NAND, two XOR, and six NOT gates are required. Figure 12.12 describes the DNA 
circuit of the two-molecular multiplication. 

To find the required performing time of a DNA multiplication circuit, it is divided 
into multiple pipelines as some of the basic DNA gate operations are performed in 
parallel. Among all of the pipelines, five are as follows: 

1. NAND, NOT 
2. NAND, NOT, XOR



12.4 Speed Calculation in DNA Operational Circuits 259

Fig. 12.12 DNA multiplier circuit 

3. NAND, NOT, NAND, NOT, NAND, NOT 
4. NAND, NOT, NAND, NOT; and 
5. NAND, NOT, XOR. 

According to Sect. 12.2, it can be perceived that any DNA basic gate (i.e., AND, 
OR, NOT, and XOR) operation needs more or less than 2 h to perform. In addition, 
6 h are needed for preparing any DNA basic gate operation and 2 h for fluorescence 
detection which is fixed for any multi-(basic) gate operation. 

As the third pipeline is the longest pipeline for processing input to the output of 
the two-molecular multiplication circuit, it is taken for measuring the total required 
performing time. Other DNA basic gate operations will be performed within this 
time in parallel. 

So, the required time for four basic gate operations in DNA is .= (2. × 6) = 12 h,



260 12 Speed Calculation

where the performing time for DNA gate (NAND and NOT) operation needs more 
or less than 2 h. 

The total required time for performing DNA two-molecular multiplication cir-
cuit operation operation is the summation of initial preparation time, fluorescence 
detection time, and DNA gate operational time. 

So, the required time for DNA two-molecular multiplication circuit operation is 
. = (Basic gate preparation time. + six basic DNA gate operational time. +fluorescence 
detection) 
.= (6 .+ 12 .+ 2) h 
.= 20 h (approximately). 

12.5 Speed Calculation in Quantum-DNA Circuits 

A Quantum-DNA computation system can merge all advantages of quantum com-
puting and DNA computing. In a Quantum-DNA computing system, the input will be 
received as a qubit and after performing in a certain number of quantum operational 
gates these qubits will be turned into DNA sequences by NMR relaxation. 

12.5.1 Full Subtractor at 0 K 

A full subtractor is a combinational circuit that is developed to overcome the draw-
back of the half subtractor circuit. It can take inputs and after subtracting them creates 
two outputs. Here the full subtractor is implemented using the Quantum-DNA Cir-
cuit. To create a full subtractor, two Not, two XOR, two AND, and an OR operational 
circuit are required. Figure 12.13 describes the Quantum-DNA circuit for full sub-
tractor. A full subtractor receives three inputs and produces two outputs containing 
“D” and “B.out”. 

From the Quantum-DNA circuit in Fig. 12.13, it is found that 1 XOR, 2 AND 
quantum gate operational circuits perform with quantum qubits. The output of all 
quantum operational gates goes through NMR relaxation at 0 K. It produces DNA 
sequence as an output and it can be used as an input in all DNA operational circuits. 

Here, two DNA operational circuits (one XOR and one OR) are used to find the 
expected output. Four DNA sequences are the outputs from the NMR relaxation 
process and are used as input sequence in the XOR and OR DNA operational gate. 

To find the required performing time of a Quantum-DNA full subtractor, it can 
be divided into three pipelines as some of the basic quantum and DNA operational 
gates are performing in parallel.



12.5 Speed Calculation in Quantum-DNA Circuits 261

Fig. 12.13 A quantum-DNA full subtractor 

Three pipelines are as follows: 

(1) Quantum XOR, DNA XOR 
(2) Quantum (XOR, NOT, AND), DNA OR 
(3) Quantum (NOT, AND), DNA OR. 

As the second pipeline is the largest pipeline for providing an output of the full 
subtractor, it is taken for measuring the total required performing time. Other quantum 
and DNA basic operational gates will be performed in parallel within this time. Three 
pipelines for extracting the output, one can understand that last one operational 
gate will perform with DNA sequence and others will perform with qubit quantum 
operational gate. According to Sect. 12.2, it can be perceived that XOR and AND 
quantum operational gates need 10 .µs and 30 . µs, respectively. And a single qubit 
quantum operation as NOT needs 1 .µs. 

So, the required time for three basic quantum operational gates is (10 .+ 1 .+ 30) 
. µs. 

.= 41 . µs.



262 12 Speed Calculation

Furthermore, from Sect. 12.3, it is found that any DNA basic gate (i.e., AND, 
OR, NOT, and XOR) operation needs more or less than 2 h to perform. In addition, 
6 h are needed for preparing any DNA basic gate operation and 2 h for fluorescence 
detection which is fixed for any multi-(basic) gate operation. 

The total operational time required for DNA OR operation is the summation of 
initial preparation time, fluorescence detection time, and DNA gate operational time. 

So, the required time for DNA OR operation is 
. = (Basic gate preparation time. +OR gate operational time. +Fluorescence detection) 
.= (6 .+ 2 .+ 2) 
.= 10 h (approximately). 

Thus, to find the expected output of the Quantum-DNA full subtractor, the required 
time will be the summation of quantum operation and DNA operation. 

So, the total required time for Quantum-DNA full subtractor operation is 
.= (Required time for quantum operation .+ Required time for DNA operation) 
.= (41 .µs .+ 10 h) 
.= 10 h (approximately). 

12.5.2 Full Adder at 0 K 

Full adder is the adder that adds three inputs and produces two outputs. The first two 
inputs are A and B and the third input is an input carry as C. in . The output carry is desig-
nated as C.out and the normal output is designated as S which is sum. A full adder logic 
is designated in such a manner that it can take eight inputs together to create a qubit 
adder and cascade the carry qubit from one adder to another. Figure 12.14 describes 
the Quantum-DNA circuit of the full adder. 

From the Quantum-DNA circuit in Fig. 12.14, it is found that one XOR and two 
AND quantum gate operational circuit performs with quantum qubits. The output of 
all quantum operational gates goes through NMR relaxation at 0 K. It produces the 
DNA sequence as an output and it can be used as an input in all DNA operational 
circuits. 

Here, two DNA operational circuits (one XOR and one OR) are used to find the 
expected output. Four DNA sequences are the outputs from the NMR relaxation 
process and are used as input sequence in the XOR and OR DNA operations. 

To find the required performing time of Quantum-DNA full adder, it can be divided 
into four pipelines as some of the basic quantum and DNA operational gates are 
performing in parallel. Three pipelines are as follows: 

(1) Quantum XOR, DNA XOR 
(2) Quantum (XOR, AND), DNA OR 
(3) Quantum (AND), DNA XOR 
(4) Quantum AND, DNA OR. 

As the second pipeline is the largest pipeline for providing an output of the full 
adder, it is taken for measuring the total required performing time. Other quantum



12.5 Speed Calculation in Quantum-DNA Circuits 263

Fig. 12.14 A quantum-DNA full adder 

and DNA basic operational gates will be performed in parallel within this time. Four 
pipelines for extracting the output, one can understand that the last operation will be 
performed with DNA sequence and others will perform with qubit in the quantum 
operational gate. According to Sect. 12.2, it can be perceived that XOR and AND 
quantum operational gates need 10 . µs and 30 . µs, respectively. 

So, the required time for two basic quantum operational gates is (10 .+ 30) . µs. 
.= 40 . µs. 

Furthermore, from Sect. 12.3, it is found that any DNA basic operational gate 
(i.e., AND, OR, NOT, and XOR) needs more or less than 2 h to perform. In addition, 
6 h are needed for preparing any DNA basic gate operation and 2 h for fluorescence 
detection which is fixed for any multi-(basic) gate operation. 

The total operational time required for DNA OR operation is the summation of 
initial preparation time, fluorescence detection time and DNA gate operational time. 

So, the required time for DNA OR operation is 
. = (Basic gate preparation time. +OR gate operational time. +Fluorescence detection) 
.= (6 .+ 2 .+ 2) 
.= 10 h (approximately).



264 12 Speed Calculation

Thus, to find the expected output of Quantum-DNA full subtractor, the required 
time will be the summation of Quantum operation and DNA operation. 

So, the total required time for Quantum-DNA full subtractor is 
.= (Required time for quantum operation .+ Required time for DNA operation) 
.= (40 .µs .+ 10 h) 
.= 10 h (approximately). 

12.5.3 Multiplier at 0 K 

To create a Quantum-DNA multiplier circuit, four AND operations in quantum, two 
XOR, and two AND DNA operational gates are required. Figure 12.15 describes the 
Quantum-DNA circuit of the two-bit multiplication. 

From the Quantum-DNA circuit in Fig. 12.15, it is found that four AND quantum 
gate operational circuits perform with quantum qubits. The output of all quantum 
operational gates goes through NMR relaxation at 0 K. It produces DNA sequence 
as an output and it can be used as an input in all DNA operational circuits. 

Fig. 12.15 Quantum-DNA multiplier circuit



12.5 Speed Calculation in Quantum-DNA Circuits 265

To find the required operational time of a Quantum-DNA multiplier, it can be 
divided into five pipelines as some of the basic quantum and DNA operational gates 
are performing in parallel. Five pipelines are as follows: 

(1) Quantum AND, DNA XOR 
(2) Quantum AND, DNA (AND, XOR) 
(3) Quantum AND, DNA (AND, AND) 
(4) Quantum AND 
(5) Quantum AND, DNA AND. 

As the second or third pipeline is the largest pipeline for providing an output of the 
multiplier, any of these two can be taken for measuring the total required performing 
time. Other quantum and DNA basic operational gates will perform in parallel within 
this time. There are five pipelines for extracting the output, where one can understand 
that the last two operational gates will perform with DNA sequence and others will 
perform with qubit using quantum gates. According to Sect. 12.2, it can be perceived 
that the quantum AND gate needs 30 .µs for providing the output. 

So, the required time for the basic quantum operational gate is 30 . µs. 
Furthermore, from Sect. 12.3, it is found that any DNA basic operational gate (i.e., 

AND, OR, NOT and XOR) needs more or less than 2 h to perform. In addition, it need 
6 h for preparing any DNA basic gate operation and 2 h for fluorescence detection 
which is fixed for any multi-(basic) gate operation. 

So, the required time for DNA XOR and AND operations are (2 .+ 2) h 
.= 4 h  
The total operational time required for DNA OR is the summation of initial prepa-

ration time, fluorescence detection time and DNA gate operational time. 
So, the required time for DNA OR operation is 

. = (Basic gate preparation time. + DNA gate operational time. + Fluorescence detec-
tion) 
.= (6 .+ 4 .+ 2) 
.= 12 h (approximately). 

Thus, to find the expected output of Quantum-DNA multiplier, the required time 
will be the summation of quantum operation and DNA operation. 

So, the total required time for Quantum-DNA multiplier operation is 
.= (Required time for Quantum operation .+ Required time for DNA operation) 
.= (30 .µs .+ 12 h) 
.= 12 h (approximately). 

12.5.4 Multiplexer at 0 K 

A multiplexer (MUX) is a device that can receive multiple input signals and synthe-
size a single output signal in a recoverable manner for each input signal. It is also an 
integrated system that usually contains a certain number of data inputs and a single 
output. To create a multiplexer, one NOT, two AND, and an OR gates are required.



266 12 Speed Calculation

Fig. 12.16 Quantum-DNA 2-to-1 multiplexer circuit 

Figure 12.16 describes the Quantum-DNA circuit of the multiplexer. A multiplexer 
receives three inputs and produces one output containing “Y”. 

From the Quantum-DNA multiplexer circuit in Fig. 12.16, two AND quantum 
gate operational circuits performs with quantum qubits. The output of all quantum 
operational gates goes through NMR relaxation at 0 K. It produces a DNA sequence as 
an output and it can be used as an input in all DNA operational circuits. Here, a DNA 
operational circuit (OR) is used to find the expected output. Two DNA sequences are 
the outputs from the NMR relaxation process and are used as an input sequences in 
OR DNA operational gate. 

To find the required operational time of Quantum-DNA Multiplexer, divide it into 
five pipelines as some of the basic quantum and DNA operations are performing in 
parallel. Five pipelines are as follows: 

1. Quantum AND, DNA OR 
2. Quantum AND, DNA OR. 

As both pipelines are equal for providing an output of the Multiplexer, taking any 
of these two for measuring the total required performing time. Other quantum and 
DNA basic operations will be performed in parallel within this time. Two pipelines 
for extracting the output, one can understand that the last operation will be performed 
with DNA sequence and others will perform with qubit in the quantum operational 
gate. According to Sect. 12.2, AND quantum, operational gate needs 30 .µs for 
providing the output. 

So, the required operational time for a basic quantum gate is 30 . µs. 
Furthermore, from Sect. 12.3, any DNA basic gate (i.e., AND, OR, NOT and 

XOR) needs more or less than 2 h to perform. In addition, it needs 6 h for preparing 
any DNA basic gate operation and 2 h for fluorescence detection which is fixed for 
any basic gate operation.



12.6 Speed Calculation in DNA-Quantum Circuits 267

So, the required time for DNA OR operations is 2 h. 
The total performing time required for DNA OR operation is the summation of 

initial preparation time, fluorescence detection time and DNA gate operational time. 
So, the required time for DNA OR operation is 

. = (Basic gate preparation time. + DNA gate operational time. + Fluorescence detec-
tion) 
.= (6 .+ 2 .+ 2) 
.= 10 h (approximately). 

Thus, to find the expected output of Quantum-DNA Multiplier, the required time 
will be summation of Quantum operation and DNA operation. 

So, total required time for Quantum-DNA Multiplier is 
.= (Required time for Quantum operation .+ Required time for DNA operation) 
.= (30 .µs .+ 10 h) 
.= 10 h (approximately). 

12.6 Speed Calculation in DNA-Quantum Circuits 

A DNA-Quantum computation system is introduced to find a super-fast computation 
system with a lot of memory. This DNA-Quantum computation device combines the 
benefits of both quantum and DNA computing. 

In a DNA-Quantum computing system, input will be received in DNA sequences 
and after performing in a certain number of DNA operational gates these DNA 
sequences will be turned into quantum qubits by the NMR process. 

12.6.1 3-Qubit Parity Qubit Checker at 0 K 

A circuit that checks the parity in the receiver is called a Parity Checker. A combined 
circuit or device of parity generators and parity checkers are commonly used in digital 
systems to detect single-bit errors in the transmitted data. To create a 3-qubit even 
parity bit checker, three quantum XOR gates are required. 

Figure 12.17 describes the DNA-Quantum circuit of 3-qubit even parity-qubit 
checker. A 3-qubit even parity qubit checker receives four inputs and produces one 
output containing “E”. 

From the DNA-Quantum circuit in Fig. 12.17, two XOR DNA operational gate 
performs with DNA sequence. The output of all DNA operational gates goes through 
NMR at 0 K. It produces a quantum qubit as an output and it can be used as an input 
in all quantum operational circuits. Here a DNA operational circuit (XOR) is used 
to find the expected output. Two quantum qubit is the output from the NMR process 
and is used as input qubit in Quantum OR operation. To find the required performing 
time of DNA-Quantum 3-molecular Even parity molecular checker, divide it into



268 12 Speed Calculation

Fig. 12.17 DNA-quantum circuit of 3-molecular even parity molecular checker 

two pipelines as some of the basic quantum and DNA operational gate is performing 
in parallel. Two pipelines are as follows: 

1. DNA XOR, Quantum XOR 
2. DNA XOR, Quantum XOR. 

As both pipelines are equal for providing an output of the 3-molecular even parity 
molecular checker, taking any of these two for measuring the total required perform-
ing time. Other DNA and Quantum operations will be performed in parallel within 
this time. DNA basic operational gate (i.e., AND, OR, NOT and XOR) needs more 
or less than 2 h to perform. In addition, it needs 6 h for preparing any DNA basic gate 
operation and 2 h for fluorescence detection which is fixed for any multi-(basic) gate 
operation. 

So, the required time for DNA XOR operations is 2 h. 
The total performing time required for DNA XOR operation is the summation of 

initial preparation time, fluorescence detection time and DNA gate operational time.



12.6 Speed Calculation in DNA-Quantum Circuits 269

So, the required time for DNA OR operation is 
. = (Basic gate preparation time. + DNA gate operational time. + Fluorescence detec-
tion) 
.= (6 .+ 2 .+ 2) 
.= 10 h (approximately). 

XOR quantum operation needs 10 .µs to obtain the output. 
So, the required time for basic quantum operational gate is .= (10) . µs. 
Thus, to find the expected output of the DNA-Quantum 3-molecular even parity 

molecular checker, the required time will be summation of Quantum operation and 
DNA operation. 

So, the total required time for DNA-Quantum 3-molecular even parity molecular 
checker is 
. = (The required time for DNA operation. +The required time for Quantum operation) 
.= (10 h .+ 10 . µs) 
.= 10 h (approximately). 

12.6.2 Full Subtractor at 0 K 

A Full Subtractor is a combinational circuit that is developed to overcome the draw-
back of the half subtractor circuit. It can take inputs and after subtracting them creates 
two outputs. Here full Subtractor is implemented using the DNA- Quantum Circuit. 
To create a Full Subtractor, two NOT, two XOR, two AND, and an OR operational 
circuit are required. Figure 12.18 describes the DNA-Quantum circuit for Full Sub-
tractor. A Full Subtractor receives three inputs and produces two outputs with “D” 
and “B.out”. 

From the Quantum-DNA circuit in Fig. 12.18, 1 XOR, 2 NOT, and 2 AND DNA 
gate operational circuit performs with DNA sequences. The output of all DNA oper-
ational gates goes through NMR at 0 K. It produces Quantum qubit as an output and 
it can be used as an input in all quantum operational circuits. 

Here 2 quantum operational circuit (1 XOR and 1 OR) is used to find the expected 
output. Four quantum qubits are the output from the NMR process and is used as 
input qubit in XOR and OR quantum operational gate. 

To find the required operational time of DNA-Quantum Full Subtractor, divide it 
into three pipelines as some of the basic DNA and Quantum operations are performed 
in parallel. Three pipelines are as follows: 

1. DNA (XOR, NOT), Quantum XOR 
2. DNA (XOR, NOT, AND), Quantum OR 
3. DNA (NOT, AND), Quantum OR. 

As the second pipeline is the largest pipeline for providing an output of the Full 
Subtractor, it is considered it for measuring the total required operational time. The



270 12 Speed Calculation

Fig. 12.18 DNA-quantum circuit of full subtractor at 0 K operation 

other quantum and DNA basic gate operations will perform in parallel within this 
time. Three pipelines for extracting the output, one can understand that the last 
operation will be performed with quantum qubit and others will perform with DNA 
sequence. 

From Sect. 12.3, any DNA basic gate (i.e., AND, OR, NOT, and XOR) operation 
needs more or less than 2 h to perform. In addition, it needs 6 h for preparing any 
DNA basic gate operation and 2 h for fluorescence detection which is fixed for any 
multi-(basic) gate operation. 

The total operational time required for DNA operations is the summation of the 
initial preparation time, fluorescence detection time, and DNA gate operational time.



12.6 Speed Calculation in DNA-Quantum Circuits 271

So, the required time for DNA operations is 
. = (Basic gate preparation time. + DNA gate operational time. + Fluorescence detec-
tion) 
.= [6 .+ (2 .+ 2 .+ 2) .+ 2) 
.= 14 h (approximately). 

According to Sect. 12.2, OR quantum gate operation needs 30 .µs, respectively. 
So, the required time OR quantum gate operation is 30 . µs. 
Thus, to find the expected output of DNA-Quantum Full Subtractor, the required 

time will be summation of quantum operation and DNA operation. 
So, the total required time for Quantum-DNA Full Subtractor is 

. = (The required time for DNA operation. +The required time for quantum operation) 

.= (30 .µs .+ 14 h) 

.= 14 h (approximately). 

12.6.3 Full Adder at 0 K 

Full Adder is the adder that adds three inputs and produces two outputs. The first 
two inputs are A and B and the third input is an input carry as C. in . The output carry 
is designated as C.out and the normal output is designated as S which is Sum. A Full 
Adder logic is designated in such a manner that can create a qubit adder and cascade 
the carry qubit from one adder to another. To create a Full Adder, one OR, two 
NAND one XOR, and two NOT gates are required. Figure 12.19 describes the DNA-
Quantum circuit of the Full Adder. From the DNA-Quantum circuit in Fig. 12.19, 
one XOR and two AND DNA gate operational circuits perform operations with 
DNA sequence. The output of all DNA operations through NMR at 0 K. It produces 
Quantum qubit as an output which can be used as an input in all quantum circuit. 
Here 2 Quantum operational circuit (1 XOR and 1 OR) is used to find the expected 
output. Four quantum qubits are the output from the NMR process and are used as 
input in XOR and OR quantum operations. 

To find the required operational time of DNA-Quantum Full Adder, it is needed 
to divide it into four pipelines as some of the basic quantum and DNA operations are 
performed in parallel. Four pipelines are as follows: 

1. DNA XOR, Quantum XOR 
2. DNA AND, Quantum OR 
3. Quantum XOR 
4. DNA AND, Quantum OR. 

As the first, second, and fourth pipeline is the equal and largest pipeline for providing 
an output of the Full Adder, any of them for measuring the total required operational 
time. Others DNA and quantum basic is considered for gates will perform in parallel 
within this time. Four pipelines for extracting the output, one can understand that 
last one operational gate will perform with quantum qubit and others will perform 
with DNA gate operation.



272 12 Speed Calculation

Fig. 12.19 DNA-quantum operational circuit for full adder at 0 K 

From Sect. 12.3, any DNA basic gate operations (i.e., AND, OR, NOT, and XOR) 
needs more or less than 2 h to perform. In addition, it needs 6 h for preparing any 
DNA basic gate operations and 2 h for fluorescence detection which is fixed for any 
operation. 

The total operational time required for DNA XOR operation is the summation of 
the initial preparation time, fluorescence detection time, and DNA operation time. 

So, the required time for DNA XOR operation is 
.= (Basic operation time .+ OR operation time .+ Fluorescence detection) 
.= (6 .+ 2 .+ 2) 
.= 10 h (approximately). 

According to Sect. 12.2, the XOR quantum operation needs 10 .µs. 
So, the required time for XOR quantum operation is 10 .µs. 
Thus, to find the expected output of the DNA-Quantum Full Adder, the required 

time will be the summation of DNA operation and Quantum operation. 
So, the total required time for Quantum-DNA full Subtractor is 

. = (The required time for DNA operation. +The required time for quantum operation) 

.= (20 .µs .+ 10 h) 

.= 10 h (approximately).



12.7 Applications 273

12.7 Applications 

This section describes some real-life applications of DNA and Quantum operation, 
where it is used and provides superior performance against classical computing 
systems. In the case of different applications, classical computing systems might fail 
but Quantum and DNA computing systems can show their capability. 

Encryption: The Data Encryption Standard (DES) employs a 56-bit key to encrypt 
64-bit information. Breaking DES means finding a key that maps the plain-text to the 
cipher-text given a (plain-text, cipher-text) pair. A traditional DES assault would need 
an exhaustive search of all 256 DES keys, which would take 10,000 years at a rate 
of 100,000 operations per second. As a result, molecular programs were developed, 
which needed around 4 months of laboratory work instead. 

DNA computation is expected to provide significant benefits in terms of speed, 
energy efficiency, and cost-effective information storage. The number of operations 
per second in Adleman’s model might be as high as 1.2. × 10. 18. This is around 
1,200,000 times quicker than the most powerful supercomputer. Additionally, DNA 
computers have the potential to be extremely energy efficient. In theory, one joule 
is enough to do about 2. × 1019 1igation operations. This is surprising given that the 
second law of thermodynamics states that there may only be 34. × 10. 19 (irreversible) 
operations per joule in theory (at room temperature). Existing supercomputers are 
significantly less efficient, with 10. 9 operations per joule at most. Finally, storing 
information in DNA molecules could allow for an information density of around 1 
bit per cubic nanometer, compared to 1 bit per 10. 12 nm. 

3 in current storage media. 

Weather Forecasting: Weather affects over 30% of US GDP ($6 trillion) directly 
or indirectly, affecting food production, transportation, and retail trade, among other 
things. The capacity to better predict the weather would be extremely beneficial in a 
variety of sectors, not to mention giving people more time to prepare for disasters. 
While scientists have a long desire to do this, the equations controlling such processes 
involve a large number of variables, making traditional simulation time-consuming. 
"Using a classical computer to undertake such analysis might take longer than it 
takes for the actual weather to evolve!” said quantum researcher Seth Lloyd. This 
prompted Lloyd and colleagues at MIT to demonstrate that the weather equations 
have a hidden wave nature that can be solved by a quantum computer. Quantum 
computers could aid in the development of improved climate models, allowing us 
to gain a better understanding of how humans affect the ecosystem. These models 
form the foundation for the projections of future warming, and they assist us in 
determining what steps need to be taken now to avoid calamities.



274 12 Speed Calculation

12.8 Summary 

Speed calculation is an important part in quantum-DNA computing and DNA-
quantum computing. Quantum computing is itself a speedy process. It is faster than 
any other supercomputer in the world. Even it is thousand times faster than the most 
powerful computer till now. DNA computing process is another way of computing 
where the storage capacity is huge and can work in a parallel way. This chapter has 
presented the way to calculate the speed and time of quantum-DNA computing and 
DNA-quantum computing in detail. Some examples have been presented to clear the 
concept of speed calculation. The necessary figures and explanations have also been 
shown in this chapter.



Chapter 13 
Heat Transfer 

13.1 Introduction 

Combinatorics, a type of calculation that traditional computers have trouble with, 
is one such challenge. These calculations involve arranging elements in a way that 
achieves a particular objective. As the number of things increases, so does the number 
of possible combinations. To find the ideal arrangement, today’s digital computers 
must loop through each permutation until an outcome is found, and then deter-
mine which is the most effective at achieving the goal. In many circumstances, this 
will demand a large number of calculations. Combinatorics calculations prove prob-
lematic in a variety of sectors, ranging from banking to pharmaceuticals. Quantum 
computers come into play here. Quantum computing reduces the cost of calculat-
ing difficult combinatorial problems in the same way as classical computers have 
reduced the cost of arithmetic. 

According to the theory of thermodynamics, huge amounts of produced heat 
from a quantum circuit can deteriorate its performance. On the other hand, in the 
DNA operational circuit, to complete each step, it needs a certain amount of heat. 
If these two findings are merged, can provide a novel procedure to provide heat in 
DNA operational circuits by taking away the produced heat in Quantum operational 
circuits. The main objectives of chapter two are to transfer produced heat from Quan-
tum operational circuit to DNA operational circuits by heat conduction circuits in 
Quantum-DNA operational circuit and multivalued Quantum-DNA operational cir-
cuits. Heat transfer is important in protecting the environment by reducing emissions 
and pollutants. The heat conduction circuit receives heat from the Quantum opera-
tional gate. The NIS junctions produce heat flows between the normal-metal islands 
and the superconducting leads. Then, the electrons in the normal metal exchange heat 
with the phonon bath. Next, the islands exchange heat with each other by photons 
traveling in the transmission line. Finally, the model takes into account the geometri-
cal properties of the samples as well as properties specific to the measurement setup. 
Basically, heat passes through the junction into metal then electrons are heated and 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9_13 

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5349-9_13&domain=pdf
https://doi.org/10.1007/978-981-97-5349-9_13
https://doi.org/10.1007/978-981-97-5349-9_13
https://doi.org/10.1007/978-981-97-5349-9_13
https://doi.org/10.1007/978-981-97-5349-9_13
https://doi.org/10.1007/978-981-97-5349-9_13
https://doi.org/10.1007/978-981-97-5349-9_13
https://doi.org/10.1007/978-981-97-5349-9_13
https://doi.org/10.1007/978-981-97-5349-9_13
https://doi.org/10.1007/978-981-97-5349-9_13
https://doi.org/10.1007/978-981-97-5349-9_13
https://doi.org/10.1007/978-981-97-5349-9_13


276 13 Heat Transfer

this electron transfers the heat to photon bath on the coplanar waveguide channel, 
and then it goes to one 1-meter distance. 

13.2 Quantum Heat Conductance Circuit 

It is possible to calculate the heat of the Quantum circuit by using the laws of ther-
modynamics. In addition, this heat can transfer into DNA circuits using some basic 
operations of heat transfer. This section will discuss how to transfer the produced 
heat from the quantum operation to DNA circuits. Figure 13.1 depicts the Quantum 
heat conduction circuit using photon and nanotube. 

13.2.1 Design Procedure 

In this design, nanotube photons are used for heat conduction. Here heat conduction 
will happen from one island to another island. The length of the coplanar waveguide 
is either 20 cm or 1 m, and it has a double-spiral structure on the a silicon chip with a 
size of 1. × 1 cm. 

2 or 2. × 2 cm. 
2, respectively. In all samples, the normal-metal islands 

terminating the waveguide have two galvanic contacts to superconducting lines: one 
to the center conductor of the waveguide and the other to the ground plane. 

Fig. 13.1 Quantum heat conduction circuit using photon and nanotube



13.3 Heat Transfer in Quantum-DNA Logic Operations 277

In practice, the two resistors are connected symmetrically by two aluminum super-
conducting lines, interrupted by a DC-SQUID (superconducting quantum interfer-
ence device) in each line. These nanostructures are fabricated with electron beam 
lithography. The two AuPd resistors are nominally identical—6.6 mm long, 0.8 mm 
wide, and 15 nm thick. Their resistances are Ri. < 200 V each. The register is also con-
nected with the downstairs aluminum beam for thermometry and joule heating. On 
the upside, the chip is attached to a sample holder containing a printed circuit board 
(PCB), to which the sample is connected by A1 bond wires. The PCB is connected 
to a room-temperature measurement set-up with glossy coaxial cables. 

13.2.2 Working Principle 

The quantum of thermal conductance, GQ .= πk. B2T/6. �, provides the fundamental 
upper limit for heat conduction through a single channel. Here, T is the temperature, 
.kB denotes the Boltzmann constant, and . � is the reduced Planck’s constant. From 
that equation, a measurement of quantum conductance can be taken. 

With the help of the circuit using photons, the heat conduction limit will be 1 m. 
In this circuit in the nanotube, photons are used because photons, unlike many other 
carriers of heat, can travel macroscopic distances without significant scattering. For 
example, in the case of optical fibers or superconducting waveguides. 

Here heat conduction happens through a single channel formed by photons trav-
eling in a long superconducting waveguide in a single transverse mode. This heat 
transport does not depend on only photon temperature rather it depends on control of 
the temperature. One island transports the heat to another island or the temperature 
of each island is increasing when another island’s temperature decreases. 

The NIS superconducting junction is connected to islands, which are metal. NIS 
junction is sometimes used to cool or to heat the normal metal. 

Firstly, the NIS junctions produce heat flows between the normal-metal islands and 
the superconducting leads. Secondly, the electrons in the normal metal exchange heat 
with the phonon bath. Then, the islands exchange heat between each other by photons 
traveling in the transmission line. Finally, the model takes into account the geomet-
rical properties of the samples as well as properties specific to the measurement 
setup. 

Here, in this circuit heat passes through the junction into metal then the electron 
is heated and this electron transfers the heat to the photon bath on the coplanar 
waveguide channel, and then it goes to one 1-meter distance. 

13.3 Heat Transfer in Quantum-DNA Logic Operations 

Now, this section will show how to transfer heat between basic quantum and DNA 
operational gates like AND, OR, XOR, and NOT operational gates. These quantum 
operational gates are prepared with Quantum basic gates as NOT, CNOT, V+, and



278 13 Heat Transfer

V. On the other hand, DNA operational gates are prepared with base DNA sequence 
and enzymes. 

13.3.1 Heat Transfer from Quantum AND Operation to DNA 
NOT Operation 

Figure 13.2 shows the heat transfer circuit of quantum-DNA NAND operation. 
Quantum AND operation is transferring excessive heat to DNA NOT operation. 

13.3.1.1 Design Procedure 

The given circuit design describes a quantum operational gate as AND and a DNA 
operational gate as NOT. In the AND gate, three v+ and two NOT gates are used It is 
a three-qubit gate and two qubits are input and one qubit is an ancilla qubit. From the 
quantum AND gate, connect the junction to transfer heat to metal. The island is metal 
in a heat conduction circuit. There are two resistors and a photon bath working as a 
heat conductance at a distance of 1 m. Then heat is transferred by junction into the 
DNA circuit. The output qubit produced from AND operational gate being relaxed 
using the NMR relaxation process and becomes a DNA sequence which is the input 
in DNA NOT operation. Quantum AND gate and DNA NOT gate make together a 
NAND operation. 

Fig. 13.2 Quantum-DNA NAND operation circuit



13.3 Heat Transfer in Quantum-DNA Logic Operations 279

13.3.1.2 Working Procedure 

In the quantum AND operational circuit, 2 qubits as input and an ancilla bit are used. 
The Ancilla bit is used to reverse the operation. The ancilla qubit is also used for 
error correction and it is called check bit. Here in Quantum AND operation, qubit is 
used as |0.> because without this qubit, the gate cannot be reversed and an error will 
occur in the output without an ancilla qubit. 

When qubits are started to operate as a gate operation, they create a huge temper-
ature but quantum computers need an absolute zero temperature environment. With 
the junction heat transfer to metal molecules. Then molecules transfer the heat into 
the photon bath and then photons transfer heat through the channel. And finally, get-
ting sequence by NMR relaxation from the first quantum operation and heat into the 
DNA NOT operation. In addition, for DNA operation, it needs some basic amount 
of heat such as mixing, melting, and amplifying. 

13.3.2 Heat Transfer from Quantum OR Operation to DNA 
NOT Operation 

Figure 13.3 shows the Quantum-DNA NOR operation heat transfer circuit. In this 
NOR operation circuit OR operation is performed using quantum OR operation 
and NOT operation is performed using DNA NOT operation. The output qubit of 
OR operation is converted into DNA corresponding to DNA sequence using NMR 
relaxation. The design procedure and working procedure of Quantum-DNA NOR 
operation are explained in the Sects. 13.3.2.1 and 13.3.2.2. 

13.3.2.1 Design Procedure 

The given circuit design describes a Quantum operational gate as OR and a DNA 
operational gate as NOT. In the quantum OR operation, two v+ and two v gates are 
used. It is a three-qubit gate and two qubits are input and one qubit is an ancilla 
qubit. From the quantum OR operation, the junction is connected to transfer heat 
to metal. The island is metal in a heat conduction circuit. There are two resistors 
and a photon bath working as a heat conductance at a distance of 1 m. Then heat 
is transferred by junction into the DNA circuit. The output qubit produced from 
quantum OR operation being relaxed using NMR relaxation process and becomes a 
DNA sequence which is the input in DNA NOT operation. Quantum OR operation 
and DNA NOT operation make together a NOR operation.



280 13 Heat Transfer

Fig. 13.3 Quantum-DNA NOR operation circuit 

13.3.2.2 Working Procedure 

In the quantum OR operational circuit, 2 qubits as input and an ancilla qubit are used. 
The ancilla qubit is used to reverse the operational gate. Ancilla qubit is also used for 
error correction and it is called check qubit. Here in Quantum OR operation, qubit 
|0.> is used because without this qubit it is not possible to reverse the gate and an 
error in output without an ancilla qubit will be produced. 

When qubits are started to operate as a gate operation, they create a huge temper-
ature but quantum computers need an absolute zero temperature environment. With 
the junction heat transfer to metal molecules. Then molecules transfer the heat into 
the photon bath and then photons transfer heat through the channel. Finally, getting 
sequence by NMR relaxation from the first quantum operation and heat into the DNA 
NOT operational gate. In addition, for DNA operation, it needs some basic amount 
of heat such as for mixing, melting, and amplifying. 

13.3.3 Heat Transfer from Quantum XOR Operation to DNA 
NOT Operation 

Figure 13.4 shows the heat transfer circuit of Quantum-DNA XNOR operation. In 
this circuit, XOR operation is performed using quantum XOR operation and NOT



13.3 Heat Transfer in Quantum-DNA Logic Operations 281

Fig. 13.4 Quantum-DNA XNOR operation heat transfer circuit 

operation is performed using DNA NOT operation. The output qubit of XOR oper-
ation is converted into DNA corresponding to DNA sequence using NMR relax-
ation. The design procedure and working procedure of the heat transfer circuit of 
Quantum-DNA XNOR operation are explained in the Sects. 13.3.3.1 and 13.3.3.2. 

13.3.3.1 Design Procedure 

The given circuit design describes a quantum operational gate as XOR and a DNA 
operational gate as NOT. In the XOR gate, one CNOT gate is used. It is a two-qubit 
gate and both are inputs. From the quantum XOR gate, the junction is connected 
to transfer heat to metal. The island is metal in a heat conduction circuit. There are 
two resistors and a photon bath working as a heat conductance at a distance of 1 m. 
Heat is transferred by junction into the DNA circuit. The output qubit produced from 
XOR operational gate is relaxed using the NMR relaxation process and becomes a 
DNA sequence which is the input in DNA NOT the operational gate. Quantum XOR 
gate and DNA NOT gate make together an XNOR operational gate. 

13.3.3.2 Working Procedure 

In the quantum XOR operational circuit, two qubits are used as input. When qubits 
are started to operate as a gate operation, they create a huge temperature but quantum 
computers need an absolute zero temperature environment. With the junction heat 
transfer to metal molecules. Then molecules transfer the heat into the photon bath



282 13 Heat Transfer

and next, photons transfer heat through the channel. And finally, getting sequence by 
NMR relaxation from the first quantum operational gate and heat into the DNA NOT 
the operation. In addition, for DNA operation, the basic amount of heat is needed 
such as mixing, melting, and amplifying. 

13.4 Heat Transfer in Quantum-DNA Circuits 

According to quantum computing, quantum computation is faster than classical com-
putation systems. Quantum computers are also more powerful than supercomputers 
in terms of computing. They are 1000 times faster than regular computers and super-
computers at processing data. Quantum computers can execute calculations that 
would take a regular computer 1000 years to complete in a matter of seconds. On the 
other hand, the use of DNA strands to compute has led to high parallel computation 
that makes up for the slow processing of the chip. Memory space required by DNA 
is around 1 bit per cubic nanometer which is much less when compared to regular 
storage systems Consumption of power is almost nil as the chemical bonds in DNA 
produce energy to build or repair new strands. So, To find a super faster computation 
system with huge memory, a Quantum-DNA computation system can be developed. 
This Quantum-DNA computation system can merge all the advantages of quantum 
computing and DNA computing. 

In a Quantum-DNA computing system, input will be received as a qubit and after 
performing in a certain number of quantum operations, these qubits will be turned 
into DNA sequences by NMR relaxation. 

13.4.1 Heat Transfer in Quantum-DNA Full Adder Circuit 

Full Adder is the adder that adds three inputs and produces two outputs. The first 
two inputs are A and B and the third input is an input carry as C. in . The output carry 
is designated as C.out and the normal output is designated as S which is Sum. A 
Full Adder logic is designated in such a manner that can take eight inputs together 
to create a qubit adder and cascade the carry qubit from one adder to another. To 
create a Full Adder, one OR, two AND, and two XOR operational gates are required. 
Figure 13.5 describes the Quantum-DNA circuit of the Full Adder. 

13.4.1.1 Design Procedure 

To design a Quantum-DNA Full Adder for heat transfer, Quantum and DNA opera-
tions are used to operate the input qubit for their corresponding outputs. The Quantum 
operational gates will be used for receiving the input qubits and the DNA operations 
will be used to produce the final output against the corresponding set of inputs. Each



13.4 Heat Transfer in Quantum-DNA Circuits 283

Fig. 13.5 Quantum-DNA full Adder for heat transfer 

time, the Quantum-DNA Full adder will receive three qubits as input. After operating 
in a certain number of Quantum operations, the qubit will be turned into a corre-
sponding DNA sequence by using an NMR relaxation room temperature probe. By 
using a room temperature probe and corresponding components of NMR relaxation, 
the excited qubit turns into a ground state and produces a DNA sequence. Then the 
DNA sequence is processed through DNA operations and outputs are received. 

From the quantum operational gate, the junction is connected to metal for trans-
ferring heat. The island is metal in a heat conduction circuit. There are two resistors 
and a photon bath working as a heat conductance at a distance of 1 m. Heat is trans-
ferred by junction into the DNA circuit. Here, Fig. 13.5 describes Quantum-DNA 
Full adder using Quantum, DNA operations, and heat conduction nanotubes. 

From the figure, it is found that the Quantum-DNA Full Adder consists of three 
Quantum operations and two DNA operations. Here, two AND and one XOR are 
used as Quantum operations and further one XOR and one OR operations is used as 
DNA operations.



284 13 Heat Transfer

13.4.1.2 Working Procedure 

Here, using DNA sequence ACCTAG .= TRUE for Quantum qubit | 1 .> and DNA 
sequence TGGATC.= FLASE for Quantum qubit | 0 . >. 

The heat conduction circuit receives heat from the Quantum operations. Firstly, 
the NIS junctions produce heat flows between the normal-metal islands and the super-
conducting leads. Secondly, the electrons in the normal metal exchange heat with the 
phonon bath. Then, the islands exchange heat between each other by photons trav-
eling in the transmission line. Finally, the model takes into account the geometrical 
properties of the samples as well as properties specific to the measurement setup. 

Here in this circuit heat passes through the junction into metal then the electron is 
heated and this electron transfers the heat to photon bath on the coplanar waveguide 
channel and then it goes to one 1-m distance. 

Using NMR relaxation quantum qubits turned into DNA sequences. Further, these 
DNA sequences and supplied heat operate DNA operation of the Full Adder. 

13.4.2 Heat Transfer in Quantum-DNA Multiplier Circuit 

To create a multiplication circuit, six AND and two XOR gates are required. 
Figure 13.6 describes the Quantum-DNA circuit of the 2-qubit multiplication. 

13.4.2.1 Design Procedure 

To design a Quantum-DNA multiplier for heat transfer, Quantum and DNA 
operations are used to operate the input qubit for their corresponding outputs. 

The Quantum operations will be used for receiving the input qubits and the DNA 
operations will be used to produce the final output against the corresponding set of 
inputs. Each time, the Quantum-DNA Full adder will receive three qubits as input. 
After operating in a certain number of Quantum operations, the qubit will be turned 
into a corresponding DNA sequence by using the NMR relaxation room temperature 
probe. By using a room temperature probe and corresponding components of NMR 
relaxation, the excited qubit turns into a ground state and produces a DNA sequence. 
Then the DNA sequence is processed through DNA operations; and outputs are 
received. 

From the quantum operation, the junction is connected to metal for transferring 
heat. The island is metal in a heat conduction circuit. There are two resistors and a 
photon bath working as a heat conductance at a distance of 1 m. Heat is transferred by 
junction into the DNA circuit. Here, Fig. 13.6 describes Quantum-DNA Multiplier 
using Quantum, DNA operations, and heat conduction nanotubes. 

From the figure, the Quantum-DNA Full Adder consists of four Quantum oper-
ations and four DNA operations. Here, four AND operations are used as Quantum 
operations and further two XOR and two AND DNA operations are used.



13.4 Heat Transfer in Quantum-DNA Circuits 285

Fig. 13.6 Quantum-DNA multiplier for heat transfer using nanotubes 

13.4.2.2 Working Procedure 

Here, using DNA sequence ACCTAG = TRUE for Quantum qubit | 1 .> and DNA 
sequence TGGATC = FLASE for Quantum qubit | 0 . >. 

The heat conduction circuit receives heat from the Quantum operations. Firstly, 
the NIS junctions produce heat flows between the normal-metal islands and the super-
conducting leads. Secondly, the electrons in the normal metal exchange heat with the 
phonon bath. Then, the islands exchange heat between each other by photons trav-
eling in the transmission line. Finally, the model takes into account the geometrical 
properties of the samples as well as properties specific to the measurement setup. 

Here in this circuit heat passes through the junction into metal then the electron 
is heated and this electron transfers the heat to the photon bath on the coplanar 
waveguide channel and then it goes to one 1-meter distance. 

Using NMR relaxation quantum qubits turned into DNA sequences. Further, these 
DNA sequences and supplied heat operate the DNA operation of the multiplier.



286 13 Heat Transfer

13.5 Heat Transfer in DNA-Quantum Circuits 

DNA computing uses biological components such as DNA, biochemistry, and molec-
ular biology instead of standard silicon-based computing technology. When applied 
to problems that can be broken down into independent, discontinuous tasks, DNA 
computers have obvious advantages over traditional computers. This is because 
strands of DNA can store large amounts of data and perform many operations at 
the same time, thus solving degradable problems significantly faster. On the other 
hand, the fastest computing system can be defined as a quantum computing system 
that processes qubits. 1. >, | 0. >, and both | 1.> and | 0.> at the same time. In addi-
tion, quantum computer computations are particularly promising for analyzing or 
simulating highly complex processes that use large amounts of data. 

So, a DNA-Quantum computation system is created to find a super-fast computa-
tion system with a lot of memory. This DNA-Quantum computation system combines 
the benefits of both quantum and DNA computing. It will be able to do super-fast 
parallel operations. 

In a DNA-Quantum circuit, it will use DNA operational gates to control inputs and 
Quantum qubits to control output. In this scenario, NMR is applied for transforming 
DNA sequences to quantum qubits. A cache memory is used to store DNA sequence 
temporarily which will be discussed in later chapter. 

In this regard, there is no need of any circuit for transferring heat from DNA 
operational circuit to the Quantum operational circuit. The reason behind not using 
any heat transferring circuit is, DNA operational circuit does not produce any heat 
rather it needs heat, which can be supplied from different outside sources. On the 
other hand, the Quantum operational circuit produces heat, which cannot be used 
in the DNA operational circuit because DNA operational circuit operates before the 
Quantum operational circuit. Here heat transfer from outside sources to DNA circuit 
to perform computations and the excessive heat produced by quantum circuit will be 
transferred to a cooler to make the quantum part cool. 

Figure 13.7 shows DNA-quantum Full Adder operational circuit, which clearly 
states that the required heat for the DNA operational circuit does not depend on the 
produced heat from the Quantum operational circuit. 

For DNA-Quantum Full Adder, three DNA operations as XOR and AND DNA 
operational circuit are required and for Quantum operations, two Quantum operations 
as XOR and OR are required. 

The DNA operations produced four outputs as DNA sequence and converted 
through the NMR process to produce quantum qubits. The Quantum qubits are 
then processed through OR and XOR quantum operations and produce the expected 
output.



13.6 Applications 287

Fig. 13.7 DNA-quantum Full Adder at room temperature 

13.6 Applications 

This section describes some real-life applications of DNA and Quantum operation, 
where it is used and provides superior performance against classical computing 
systems. In the case of different applications, classical computing systems might fail 
but Quantum and DNA computing systems can show their capability. 

Scheduling: A DNA computing-based algorithm was presented to solve the job 
scheduling problem. To explain the model with six tasks can be demonstrated the 
working operations, mimicking the method used for the Hamiltonian Path problem. 
This however was not the first time, Watada in early 2000 used DNA algorithms to 
work out elevator schedule systems and rearrangement of Flexible Manufacturing



288 13 Heat Transfer

System. However, due to a lack of a theoretical base, only medium-sized tasks were 
taken into consideration. 

Clustering: Clustering deals with deriving highly meaningful relationships in a com-
plex collection of data by creating a structure using various concepts and algorithms. 
DNA- based clustering involves using strands to assign edges and vertices. Itera-
tive calculations are performed for every produced cluster to improve quality. This 
method is of particular interest when dealing with large heterogeneous data with 
an unknown number of clusters. It helps in reducing the time complexity by high 
parallelism features of DNA. 

13.7 Summary 

Quantum computing focuses on speedy technology based on quantum-theoretical 
principles, which is the behavior of energy and matter of a qubit. A combination of 
qubits is used to perform any specific task in quantum computing. Quantum com-
puters represent a significant advancement in computing capability, with enormous 
performance benefits for specific use cases. The ability of bits to be in several states 
at the same time gives the quantum computer a lot of computing capability and it is 
much faster than classical bitwise computing. 

Furthermore, DNA computing uses biological molecules to do computations. The 
four-character genetic alphabet (A-adenine, G-guanine, C-cytosine, and T-thymine) 
is used in DNA computing. The input of any DNA operation can be represented by 
DNA molecules with specific sequences. The instructions are carried out by labora-
tory operations on the molecules, and the result is defined as some property of the 
final set of molecules. DNA computing promises significant and meaningful link-
ages between computers and life systems, as well as massively parallel computations. 
DNA computing can actually carry out millions of operations at the same time. 

To advance computation, it is easy to make or use DNA-Quantum computing 
systems, which will merge all the advantages of both DNA computing and Quantum 
computing. 

Heat is an important property of any operation for computation, in quantum com-
puting operation, much heat is produced by circuits, which is dependent on the 
number of qubits in the operational circuit. On the other hand, in DNA computing, it 
provides heat in the test tube to execute the operation. Here, the heat transfer circuit 
is used to pass the produced heat of quantum computing operations in the DNA 
computing operations. The heat conduction circuit receives heat from the Quantum 
operational gate. The NIS junctions produce heat flows between the normal-metal 
islands and the superconducting leads. The electrons of normal metal exchange heat 
with the phonon bath. Then, the islands exchange heat between each other by photons 
traveling in the transmission line. In every circuit heat passes through the junction 
into metal then electrons are heated and this electron transfers the heat to the photon 
bath on the coplanar waveguide channel and then it goes to one 1-m distance.



Chapter 14 
Data Conversion Mechanisms 

14.1 Introduction 

DNA-quantum computing and quantum-DNA computing systems can be used to 
combine the benefits of both DNA and quantum computation systems. It will be able 
to compute parallel operations at super-fast speed. In this, it needs to convert data from 
quantum qubits to DNA sequence and further DNA sequence to Quantum qubits. In a 
Quantum-DNA circuit, it operates inputs in quantum operation and provides outputs 
in DNA sequence. For providing output, it needs to use NMR relaxation or trap 
ion for converting quantum qubit to the DNA sequence. After getting a qubit from a 
quantum operation, it needs to operate NMR relaxation or trap ion. In NMR relaxation 
, a room temperature probe or a cryogenic probe can be used at 0 K temperature. By 
NMR relaxation qubit of superposition state turns into a normal ground state and 
gets the equivalent DNA sequence. In NMR relaxation at room temperature probes, 
decoherence problems, polarization, and scaling problems can occur thus cryogenic 
probes at 0 K temperature can be preferred for Quantum-DNA computation systems. 

In a DNA-Quantum circuit, the inputs are in DNA sequence and provide output 
in Quantum qubits. For providing output, NMR operation or Quadrupole trap ion 
is used for converting DNA sequence to quantum qubits. After getting the DNA 
sequence from the DNA operation, it needs to be operated by the NMR process to 
convert it into Quantum qubits. In the NMR process, a room temperature probe or a 
cryogenic probe can be used at 0 K temperature. By applying the NMR process for 
the DNA sequence, the qubit of the normal ground state turns into a superposition 
state or ground state according to the input sequence in NMR. The output of the 
NMR process is a quantum qubit. In NMR at room temperature probes, decoherence 
problems, polarization, and scaling problems can occur, thus cryogenic probes at 0 K 
temperature can also be preferred for the DNA-Quantum computation system. 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9_14 

289

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5349-9_14&domain=pdf
https://doi.org/10.1007/978-981-97-5349-9_14
https://doi.org/10.1007/978-981-97-5349-9_14
https://doi.org/10.1007/978-981-97-5349-9_14
https://doi.org/10.1007/978-981-97-5349-9_14
https://doi.org/10.1007/978-981-97-5349-9_14
https://doi.org/10.1007/978-981-97-5349-9_14
https://doi.org/10.1007/978-981-97-5349-9_14
https://doi.org/10.1007/978-981-97-5349-9_14
https://doi.org/10.1007/978-981-97-5349-9_14
https://doi.org/10.1007/978-981-97-5349-9_14
https://doi.org/10.1007/978-981-97-5349-9_14


290 14 Data Conversion Mechanisms

14.2 Data Conversion in Quantum-DNA Circuits 

The fastest computation system can be defined as a Quantum computation system, 
which works with qubits |1 . >, |0 . >, and both |1 .> and |0 .> at the same time. On the 
other hand, in place of standard silicon-based computer technology, DNA computing 
uses biological components such as DNA, biochemistry, and molecular biology. 
When applied to issues that can be separated into independent, non-sequential tasks, 
the DNA computer has demonstrable benefits over conventional computers. The 
reason for this is that DNA strands can store a lot of data and do numerous operations 
at the same time, allowing them to solve decomposable issues considerably faster. 
Again, Quantum computer calculations are especially promising for analyzing or 
simulating extremely complicated processes involving large volumes of data. 

So, to find a super faster computation system with huge memory, a Quantum-DNA 
computation system can be developed. This Quantum-DNA computation system can 
merge all the advantages of quantum computing and DNA computing. It will be able 
to compute parallel operations at super-fast speed. 

In a Quantum-DNA circuit, inputs are operated in quantum operation and provide 
output in DNA sequence. In this case, NMR relaxation is used for converting quantum 
qubit to a DNA sequence. Section 14.2.1 will describe the procedure for converting 
quantum qubits to the DNA sequences. 

14.2.1 NMR Relaxation at Room Temperature 

NMR relaxation is the process by which an excited magnetic state returns to its 
equilibrium distribution. When a molecule drops into the NMR probe as a sample then 
it goes to an excited state with the help of a magnetic field. When the electromagnetic 
resonance is not emitted then the magnetic field becomes weak then the superposition 
state molecule loses its energy and comes into the ground state and this process is 
called NMR relaxation. Different components of NMR relaxation are as follows: 

1. Magnet: In magnet, superconducting magnets such as shim coils, liquid helium, 
and nitrogen containers can be used. 

2. Probe: One important part of the probe is the RF coil. It controls tempera-
ture and molecules become superpositioned by the impact of this component. 
Figure 14.2 describes the circuit of the probe. There are two types of NMR probes 
which are going to be described in the following subsection. 

3. Console: Electronics for generating RF pulse, power and gradient amplifiers, lock 
system, temperature control with almost all the components of NMR controlled 
by the console. 

4. Computer: When all the data from the console are received then think the computer 
as a spectrum. Computers are used for data storage, processing, analysis, and 
communicating with other components.



14.2 Data Conversion in Quantum-DNA Circuits 291

14.2.1.1 Structure of NMR Relaxation at Room Temperature 

NMR relaxation is one part of the NMR process. Figure 14.1 describes the circuit 
structure of NMR relaxation and represents the basic schematic setup of the NMR 
relaxation process. The box is shown here in the schematic Fig. 14.1 holds supercon-
ducting coil generations or a magnet. In this NMR relaxation process, data or qubit 
are provided into the tube where RF coils exist. RF coil is transmitting a signal into 
a sample. After collecting the signal from the components, the console digitalized 
the data and the computer visualized this data as a spectrum. 

The probe contains the radiofrequency (RF) coils, tuned at specific frequencies 
for specific nuclei in a given magnetic field. 

There are two types of probes. Those are as follows: 

1. Room temperature Probe 
2. Cryogenic Probe. 

Figure 14.2 shows the circuit of a room temperature probe. 
There is a little difference in the room temperature probe in NMR relaxation. In 

NMR, it needs strong magnetic fields to give more energy to the NMR solvent and 
push them into an excited state that’s why emit EMR. But in relaxation, the EMR 
should not be emitted and the reason behind it will be explained in the working 
principle section in detail. 

Same as like room temperature probe, cryogenic probes don’t need EMR in the 
NMR relaxation process. Figure 14.3 describes the inner RF coil and outer RF coil 
for the Cryogenic probe. 

Fig. 14.1 Circuit structure of NMR relaxation



292 14 Data Conversion Mechanisms

Fig. 14.2 Circuit of a room temperature probe 

Fig. 14.3 Circuit of a Inner 
RF coil b Outer RF coil in 
cryogenic probe 

14.2.1.2 Working Principle of NMR Relaxation at Room Temperature 

NMR is an analytical chemistry technique that creates a strong magnetic field and 
makes molecules nucleus excited then molecules exist in superposition. From the 
Fig. 14.4 (Spin State Realization), it is clear that at first molecules have no spin. 
When molecules are provided into the NMR relaxation Probe as a sample then 
molecules are bound by a magnetic field. Molecules’ nuclear spin started spinning 
but they exist in the ground state still because the magnetic field didn’t create a strong 
magnetic field. So, EMR need not be emitted. 

But in NMR relaxation, the reverse process of EMR should be done. Molecules 
are needed to be back to the ground state. Therefore, if the EMR is not emitted and



14.2 Data Conversion in Quantum-DNA Circuits 293

Fig. 14.4 Spin state realization 

the magnetic field does not get strong then molecules start to lose their energy and 
come to the ground state position. 

There are two procedures for NMR relaxation. They are as follows. 

1. Spin lattice Relaxation: If the excited molecule transfers energy to the vector 
present molecule in the surrounding environment, then the excited molecule will 
lose the energy nearby solvent molecules. 

2. Spin Relaxation: In this system, superposition state molecules transfer energy to 
other molecule’s nucleus and then molecules come into the ground state but other 
molecules stay in superposition. 

Shortly, it is understood that from the above discussion, if it does not produce a 
strong magnetic field using EMR then find molecules in the ground state. Figure 14.5 
describes the overall conversion of a quantum qubit into a DNA sequence. 

Fig. 14.5 Conversion of qubit into DNA sequence



294 14 Data Conversion Mechanisms

14.2.1.3 Quantum-DNA AND Operation at Room Temperature 

Figure 14.6 shows the conversion of the qubit to a DNA sequence from a quantum 
AND operation at room temperature. The qubit output of AND gate passes through 
the NMR relaxation process to create a corresponding DNA sequence. The design 
and working procedure of the conversion of the qubit into DNA sequence from an 
AND operation are explained in this sections. 

1. Design Procedure 
Quantum AND operation circuit is prepared using two V.+ two NOT and one 
V operations. Here are three qubits |X.> and |Y.> and a constant qubit (ancilla) 
|0. >. From |X.> and |Y.> inputs, two lines to constant output and the target out-
put line (|Q. >). After getting qubit from quantum AND operation, NMR relax-
ation is needed. In NMR relaxation, a room temperature probe is used. By NMR 
relaxation, qubit of the superposition state turns into a normal ground state and 
generates the DNA sequence. 

2. Working Procedure 
At first, in this Quantum AND operational circuit, there are three inputs as qubits, 
two qubits are input and the other is the ancilla qubit. Ancilla qubit is used here to 
reverse the gate. Ancilla qubit is also used for error correction and it is called check 
bit. Here in Quantum AND gate, 1 is used because without this qubit cannot reverse 
the gate and will get an error in output without an ancilla qubit. After processing 
input going through the Quantum AND operational gate, it’s getting some output 
as a qubit. The provided output from Quantum AND operation will be used as an 

Fig. 14.6 Conversion of qubit into DNA sequence from an AND operation



14.2 Data Conversion in Quantum-DNA Circuits 295

Table 14.1 Outputs of data conversion for quantum AND operation 

|X.> |Y.> XY DNA sequence 

|0.> |0.> |0.> TGGATC 

|0.> |1.> |0.> TGGATC 

|1.> |0.> |0.> TGGATC 

|1.> |1.> |1.> ACCTAG 

input in NMR relaxation and found the ground state. When any molecule comes 
to the ground state then a real sequence will be found. The DNA sequence is 
used for DNA logic operation. Here NMR relaxation at room temperature; and in 
relaxation, EMR is not to be emitted. 
So, DNA sequence ACCTAG. =TRUE for Quantum qubit |1. > and DNA sequence 
TGGATC .= FALSE for qubit |0 . >. The outputs for different combinations of 
inputs are given in Table 14.8. 

14.2.1.4 Quantum-DNA OR Operation at Room Temperature 

Figure 14.7 shows the conversion of the qubit to a DNA sequence from a quantum 
OR operation at room temperature. The qubit output of the OR gate passes through 

Fig. 14.7 Conversion of qubit into DNA sequence from a quantum OR operation



296 14 Data Conversion Mechanisms

Table 14.2 Outputs of data conversion for quantum OR operation 

|X.> |Y.> X+Y DNA sequence 

|0.> |0.> |0.> TGGATC 

|0.> |1.> |1.> ACCTAG 

|1.> |0.> |1.> ACCTAG 

|1.> |1.> |1.> ACCTAG 

the NMR relaxation process to create a corresponding DNA sequence. The design 
and the working procedure of the conversion of the qubit into DNA sequence from 
an OR operation are explained in this sections. 

1. Design Procedure 
Quantum OR operation circuit is prepared using two V.+ and two V gates. Here 
are three qubits |X.> and |Y.> and a constant qubit (ancilla) |0 . >. From |X.> and 
|Y. > inputs, two lines to constant output, and here the target output line (|Q. >) can 
be expressed as X+Y. After getting a qubit from quantum OR operation, NMR 
relaxation should be done. In NMR relaxation, a room temperature probe is used. 
By NMR relaxation qubit of the superposition state turns into a normal ground 
state and gets the DNA sequence. 

2. Working Procedure 
At first, in this Quantum OR operational circuit, there are three inputs as qubits, 
two qubits are inputs and the other is the ancilla qubit. Here in Quantum OR gate, 
|0. > as an ancilla is used qubit because without this qubit it is not possible to reverse 
the gate and an error will come in output without an ancilla qubit. After processing 
input going through the Quantum OR operational gate, it’s getting some output 
as a qubit. The provided output from Quantum OR operation will be used as an 
input in NMR relaxation and find the ground state. When any molecule comes 
to the ground state then the real sequence will be produced. The DNA sequence 
is used for DNA logic gate operation. Here while applying NMR relaxation at 
room temperature and in relaxation, it doesn’t need to emit EMR. Here, using 
DNA sequence ACCTAG.= TRUE for qubit |1 .> and DNA sequence TGGATC 
.= FALSE for Quantum qubit |0 . >. The outputs for different combinations of 
inputs are given in Table 14.2. 

14.2.1.5 Quantum-DNA NOT Operation at Room Temperature 

Figure 14.8 shows the conversion of the qubit to a DNA sequence from a quantum 
NOT operation at room temperature. The qubit output of the NOT gate passes through 
the NMR relaxation process to create a corresponding DNA sequence. The design 
and the working procedures of the conversion of the qubit into DNA sequence from 
a quantum NOT operation are explained in this section.



14.2 Data Conversion in Quantum-DNA Circuits 297

Fig. 14.8 Conversion of qubit into DNA sequence from a quantum NOT operation 

1. Design Procedure 
Quantum NOT operation circuit is prepared using one NOT gate. Here is one qubit 
|X.> as an input. From the input, the target output line (|X. >) can be expressed as 
the inverse of the input. After a getting qubit from the quantum NOT operation, 
NMR relaxation is used. In NMR relaxation, a room temperature probe is used. 
By NMR relaxation qubit of the superposition state turns into the normal ground 
state and the DNA sequence is produced. 

2. Working Procedure 
At first, in this Quantum NOT operational circuit, here is one input as a qubit. 
Here in Quantum NOT gate, no ancilla qubit is needed. 
After processing input going through the Quantum NOT operational gate, it’s 
getting some output as a qubit. The provided output from Quantum NOT operation 
will be used as an input in NMR relaxation and the ground state is found. When 
any molecule comes to the ground state then the real sequence produces. The 
DNA sequence is used for DNA logic gate operation. Here while doing NMR 
relaxation at room temperature and in relaxation, it doesn’t need to emit EMR. 
Here, using DNA sequence ACCTAG. = TRUE for Quantum qubit |1. > and DNA 
sequence TGGATC.= FALSE for Quantum qubit |0 . >. The outputs for different 
combinations of inputs are given in Table 14.3. 

Table 14.3 Outputs of data conversion for quantum NOT operation 

|X.> |X.> DNA sequence 

|0.> |1.> ACCTAG 

|1.> |0.> TGGATC



298 14 Data Conversion Mechanisms

14.2.1.6 Quantum-DNA XOR Operation at Room Temperature 

Figure 14.9 shows the conversion of the qubit to a DNA sequence from a quantum 
XOR operation at room temperature. The qubit output of the XOR gate passes through 
the NMR relaxation process to create a corresponding DNA sequence. The design 
and working procedure of the conversion of the qubit into DNA sequence from a 
quantum XOR operation are explained in this section. 

1. Design Procedure 
Quantum XOR operation circuit is prepared using one Controlled NOT or CNOT 
gate. There are two qubits |X. > and |Y. >. From |Y. > inputs, one line goes through 
the output and the target output X XOR Y. After getting qubit from quantum 
XOR operation, NMR relaxation. In NMR, relaxation is applied and a room 
temperature probe is used. By NMR relaxation qubit of superposition state turns 
into the normal ground state and the DNA sequence is produced. 

2. Working Procedure 
At first, in this Quantum XOR operational circuit, two inputs as qubits in which 
no need of any ancilla qubits. After processing input going through the Quantum 
XOR operational gate, it’s getting some output as a qubit. The provided output 
from Quantum XOR operation will be used as an input in NMR relaxation and 
the ground state is found. When any molecule comes to the ground state then real 
sequence has come. The DNA sequence is used for DNA logic gate operation. 
Here while doing NMR relaxation at room temperature and in relaxation, it doesn’t 
need to emit EMR. 
Here, DNA sequence ACCTAG .= TRUE for Quantum qubit |1 .> and DNA 
sequence TGGATC.= FALSE for Quantum qubit |0 . >. The outputs for different 
combinations of inputs are given in Table 14.4. 

Fig. 14.9 Conversion of qubit into DNA sequence from a quantum XOR operation



14.2 Data Conversion in Quantum-DNA Circuits 299

Table 14.4 Outputs of data conversion for quantum XOR operation 

|X.> |Y.> X XOR Y DNA sequence 

|0.> |0.> |0.> TGGATC 

|0.> |1.> |1.> ACCTAG 

|1.> |0.> |1.> ACCTAG 

|1.> |1.> |0.> TGGATC 

14.2.1.7 Quantum-DNA Full Adder at Room Temperature 

Full Adder is the adder that adds three inputs and produces two outputs. The first 
two inputs are A and B and the third input is an input carry as C. in . The output carry 
is designated as C.out and the normal output is designated as S which is Sum. A 
Full Adder logic is designated in such a manner that can take eight inputs together 
to create a qubit adder and cascade the carry qubit from one adder to another. To 
create a Full Adder, one OR, two AND, and two XOR operational gates are required. 
Figure 14.10 shows the Quantum-DNA circuit of the Full Adder. 

Fig. 14.10 Quantum-DNA full adder



300 14 Data Conversion Mechanisms

Table 14.5 Outputs of quantum-DNA full adder operation 

|A.> |B.> |C.> SUM Carry 

|0.> |0.> |0.> TGGATC TGGATC 

|0.> |0.> |1.> ACCTAG TGGATC 

|0.> |1.> |0.> ACCTAG TGGATC 

|0.> |1.> |1.> TGGATC ACCTAG 

|1.> |0.> |0.> ACCTAG TGGATC 

|1.> |0.> |1.> TGGATC ACCTAG 

|1.> |1.> |0.> TGGATC ACCTAG 

|1.> |1.> |1.> ACCTAG ACCTAG 

1. Design Procedure 
To design a Quantum-DNA Full Adder, Quantum and DNA operations are used 
to operate the input qubit for their corresponding outputs. The Quantum oper-
ations will be used for receiving the input qubits and the DNA operations will 
be used to produce the final output against the corresponding set of inputs. Each 
time, the Quantum-DNA Full adder will receive three qubits as input. After oper-
ating in a certain number of Quantum operations, the qubit will be turned into 
a corresponding DNA sequence by using an NMR relaxation room temperature 
probe. By using a room temperature probe and corresponding components of 
NMR relaxation, the excited qubit turns into a ground state and produces a DNA 
sequence. Then the DNA sequence is processed through DNA operations and 
outputs are received. Here, Fig. 14.10 describes Quantum-DNA Full adder using 
Quantum and DNA operational gates. 
From the Fig. 14.10, it is obvious that the Quantum-DNA Full Adder consists 
of three Quantum operations and two DNA operations. Here, two AND and one 
XOR are used as Quantum operations and further one XOR and one OR DNA 
operations are used. 

2. Working Procedure 
The working procedure of the Quantum-DNA Full adder is given below for each 
pattern of input qubits. Here, the DNA sequence, ACCTAG. =TRUE for Quantum 
qubit |1 . >; and the DNA sequence TGGATC.= FLASE for Quantum qubit |0 . >. 
The working procedure of the Quantum-DNA Full Adder is given below in 
Table 14.5. 

1. For inputs A, B, C .= 0, Sum .= DNA XOR (Quantum XOR (A, B), C) 
.= DNA XOR (Quantum XOR (0, 0), 0) 
.= DNA XOR (0, 0) 
.= DNA XOR (TGGATC, TGGATC) [Using NMR relaxation] 
.= TGGATC 
Carry .= DNA OR (Quantum AND (C, XOR (A, B)), Quantum AND (A, B)) 
.= DNA OR (Quantum AND (0, XOR (0,0)), Quantum AND (0, 0))



14.2 Data Conversion in Quantum-DNA Circuits 301

.= DNA OR (Quantum AND (0, XOR (0, 0)), Quantum AND (0, 0)) 

.= DNA OR (0, 0) 

.= DNA OR (TGGATC, TGGATC) [Using NMR relaxation] 

.= TGGATC 
2. For inputs A, B, C .= 0, 0, 1 Sum .= DNA XOR (Quantum XOR (A, B), C) 

.= DNA XOR (Quantum XOR (0, 0), 1) 

.= DNA XOR (0, 1) 

.= DNA XOR (TGGATC, ACCTAG) [Using NMR relaxation] 

.= ACCTAG 
Carry .= DNA OR (Quantum AND (C, XOR (A, B)), Quantum AND (A, B)) 
.= DNA OR (Quantum AND (1, XOR (0, 0)), Quantum AND (0, 0)) 
.= DNA OR (Quantum AND (1, 0), 0) 
.= DNA OR (0, 0) 
.= DNA OR (TGGATC, TGGATC) [Using NMR relaxation] 
.= TGGATC 

3. For inputs A, B, C .= 0, 1, 0 Sum .= DNA XOR (Quantum XOR (A, B), C) 
.= DNA XOR (Quantum XOR (0, 1), 0) 
.= DNA XOR (1, 0) 
.= DNA XOR (ACCTAG, TGGATC) [Using NMR relaxation] 
.= ACCTAG 
Carry .= DNA OR (Quantum AND (C, XOR (A, B)), Quantum AND (A, B)) 
.= DNA OR (Quantum AND (0, XOR (0,1)), Quantum AND (0,1)) 
.= DNA OR (Quantum AND (0, 1), 0) 
.= DNA OR (0, 0) 
.= DNA OR (TGGATC, TGGATC) [Using NMR relaxation] 
.= TGGATC 

4. For inputs A, B, C .= 0, 1, 1 Sum .= DNA XOR (Quantum XOR (A, B), C) 
.= DNA XOR (Quantum XOR (0, 1), 1) 
.= DNA XOR (1, 1) 
.= DNA XOR (ACCTAG, ACCTAG) [Using NMR relaxation] 
.= TGGATC 
Carry .= DNA OR (Quantum AND (C, XOR (A, B)), Quantum AND (A, B)) 
.= DNA OR (Quantum AND (1, XOR (0, 1)), Quantum AND (0, 1)) 
.= DNA OR (Quantum AND (1, 1), 0) 
.= DNA OR (1, 0) 
.= DNA OR (ACCTAG, TGGATC) [Using NMR relaxation] 
.= ACCTAG 

5. For inputs A, B, C .= 1, 0, 0 Sum .= DNA XOR (Quantum XOR (A, B), C) 
.= DNA XOR (Quantum XOR (1, 0), 0) 
.= DNA XOR (1, 0) 
.= DNA XOR (ACCTAG, TGGATC) [Using NMR relaxation] 
.= ACCTAG 
Carry .= DNA OR (Quantum AND (C, XOR (A, B)), Quantum AND (A, B)) 
.= DNA OR (Quantum AND (0, XOR (1, 0)), Quantum AND (1, 0)) 
.= DNA OR (Quantum AND (0, 1), 0)



302 14 Data Conversion Mechanisms

.= DNA OR (0, 0) 

.= DNA OR (TGGATC, TGGATC) [Using NMR relaxation] 

.= TGGATC 
6. For inputs A, B, C .= 1, 0, 1 Sum .= DNA XOR (Quantum XOR (A, B), C) 

.= DNA XOR (Quantum XOR (1, 0), 1) 

.= DNA XOR (1, 0) 

.= DNA XOR (ACCTAG, TGGATC) [Using NMR relaxation] 

.= ACCTAG 
Carry .= DNA OR (Quantum AND (C, XOR (A, B)), Quantum AND (A, B)) 
.= DNA OR (Quantum AND (1, XOR (1,0)), Quantum AND (1,0)) 
.= DNA OR (Quantum AND (1, 1), 0) 
.= DNA OR (1, 0) 
.= DNA OR (ACCTAG, TGGATC) [Using NMR relaxation] 
.= ACCTAG 

14.2.1.8 Quantum-DNA Full Subtractor at Room Temperature 

A full subtractor is a combinational circuit that performs subtraction of two qubits, 
one is minuend and the other is subtrahend, taking into account the borrow of the 
previous adjacent lower minuend qubit. This circuit has three inputs and two outputs. 
The three inputs A, B, and B. in , denote the minuend, subtrahend, and previous borrow 
respectively. The two outputs, D and B.out represent the difference and output borrows, 
respectively. To create a full subtractor, one OR, two AND, two OR, and 2 XOR gates 
are required. Figure 14.11 describes the Quantum-DNA circuit of the Full Subtractor. 

1. Design Procedure 
To design a Quantum-DNA Full Subtractor, Quantum and DNA operations are 
used to operate the input qubit for their corresponding outputs. The Quantum 
operations will be used for receiving the input qubits and the DNA operation 
will be used to produce the final output against the corresponding set of inputs. 
Each time, the Quantum-DNA Full Subtractor will receive three qubits as input. 
After operating in a certain number of Quantum operations, the qubit will be 
turned into a corresponding DNA sequence by using an NMR relaxation room 
temperature probe. The process of producing a DNA sequence against a qubit state 
is explained in Sect. 14.2.1. By using a room temperature probe and corresponding 
components of NMR relaxation, the excited qubit turns into the ground state and 
produces a DNA sequence. Then the DNA sequence is processed through DNA 
operations and outputs are received. Here, Fig. 14.11 describes Quantum-DNA 
Full Subtractor using Quantum and DNA operations. 
From the Figure, it is obvious that the Quantum-DNA Full Subtractor consists 
of three Quantum operations and two DNA operations. Here, two AND, and one 
XOR are used as Quantum operations and further one XOR and one OR DNA 
operations are used.



14.2 Data Conversion in Quantum-DNA Circuits 303

Fig. 14.11 Quantum-DNA full subtractor 

2. Working Procedure 
The working procedure of the Quantum-DNA Full Subtractor is given below for 
each pattern of input qubits. Here, DNA sequence ACCTAG .= TRUE for qubit 
|1 .> and DNA sequence TGGATC.= FALSE for qubit |0 . >. 
The working procedure of the Quantum-DNA Full Subtractor is given below for 
4 patterns of input qubits and the outputs for different combinations of inputs are 
given in Table 14.9. 

1. For inputs A, B, B.in .= 0, Sum .= DNA XOR (Quantum XOR (A, B), B. in) 
.= DNA XOR (Quantum XOR (0, 0), 0) 
.= DNA XOR (0, 0) 
.= DNA XOR (TGGATC, TGGATC) [Using NMR relaxation] 
.= TGGATC 
Carry .= DNA OR (Quantum AND (B. in , NOT (XOR (A,B))), Quantum AND ( 
NOT (A), B)) 
.= DNA OR (Quantum AND (0, 1), Quantum AND (1, 0)) 
.= DNA OR (0, 0) 
.= DNA OR (TGGATC, TGGATC) [Using NMR relaxation] 
.= TGGATC 

2. For inputs A, B, B.in .= 0, 0, 1 Sum .= DNA XOR (Quantum XOR (A, B), B. in) 
.= DNA XOR (Quantum XOR (0, 0), 1) 
.= DNA XOR (0, 1)



304 14 Data Conversion Mechanisms

.= DNA XOR (TGGATC, ACCTAG) [Using NMR relaxation] 

.= ACCTAG 
Carry .= DNA OR (Quantum AND (B. in , NOT (XOR (A, B))), Quantum AND 
(NOT (A), B)) 
.= DNA OR (Quantum AND (1, 1), Quantum AND (1,0)) 
.= DNA OR (1, 0) 
.= DNA OR (ACCTAG, TGGATC) [Using NMR relaxation] 
.= ACCTAG 

3. For inputs A, B, B.in .= 0, 1, 0 Sum .= DNA XOR (Quantum XOR (A, B), B. in) 
.= DNA XOR (Quantum XOR (0, 1), 0) 
.= DNA XOR (1, 0) 
.= DNA XOR (ACCTAG, TGGATC) [Using NMR relaxation] 
.= ACCTAG 
Carry .= DNA OR (Quantum AND (B. in , NOT (XOR (A, B))), Quantum AND ( 
NOT (A), B)) 
.= DNA OR (Quantum AND (0, 1), Quantum AND (1, 1)) 
.= DNA OR (Quantum AND (0, 1), 1) 
.= DNA OR (0, 1) 
.= DNA OR (TGGATC, ACCTAG) [Using NMR relaxation] 
.= ACCTAG 

4. For inputs A, B, B.in .= 0, 1, 1 Sum .= DNA XOR (Quantum XOR (A, B), B. in) 
.= DNA XOR (Quantum XOR (0, 1), 1) 
.= DNA XOR (1, 1) 
.= DNA XOR (ACCTAG, ACCTAG) [Using NMR relaxation] 
.= TGGATC 
Carry .= DNA OR (Quantum AND (B. in , NOT (XOR (A,B))), Quantum AND ( 
NOT (A), B)) 
.= DNA OR (Quantum AND (1, 0), Quantum AND (1, 1)) 
.= DNA OR (Quantum AND (1, 0), 1) 
.= DNA OR (0, 1) 
.= DNA OR (ACCTAG, TGGATC) [Using NMR relaxation] 
.= ACCTAG 

14.2.1.9 Quantum-DNA 2-to-1 Multiplexer Circuit at Room 
Temperature 

A multiplexer (MUX) is a device that can receive multiple input signals and synthe-
size a single output signal in a recoverable manner for each input signal. It is also an 
integrated system that usually contains a certain number of data inputs and a single 
output. To create a Multiplexer, one NOT, two AND, and an OR gates are required. 
Figure 14.12 describes the Quantum-DNA circuit of the Multiplexer. A Multiplexer 
receives three inputs and produces one output containing “Y”.



14.2 Data Conversion in Quantum-DNA Circuits 305

Fig. 14.12 Quantum-DNA 2-to-1 multiplexer 

Table 14.6 Outputs of quantum-DNA full subtractor operation 

|A.> |B.> |B.in> SUM Carry 

|0.> |0.> |0.> TGGATC TGGATC 

|0.> |0.> |1.> ACCTAG ACCTAG 

|0.> |1.> |0.> ACCTAG ACCTAG 

|0.> |1.> |1.> TGGATC ACCTAG 

|1.> |0.> |0.> ACCTAG TGGATC 

|1.> |0.> |1.> TGGATC TGGATC 

|1.> |1.> |0.> TGGATC TGGATC 

|1.> |1.> |1.> ACCTAG ACCTAG 

1. Design Procedure 
To design a quantum-DNA 2-to-1 multiplexer, quantum operations and DNA 
operations are used to operate the input qubit for their corresponding outputs. 
The quantum operations will be used for receiving the input qubits and the DNA 
operations will be used to produce the final output against the corresponding 
set of inputs. Each time, the quantum-DNA multiplexer will receive three qubits 
as input. After operating in a certain number of quantum operations, the qubit 
will be turned into a corresponding DNA sequence by using an NMR relaxation 
room temperature probe. By using a room temperature probe and corresponding 
components of NMR relaxation, the excited qubit turns into the ground state and 
produces a DNA sequence. Then the DNA sequence is processed through DNA 
operations and outputs are received. Here, Fig. 14.12 describes quantum-DNA 
multiplexer using quantum and DNA operations.



306 14 Data Conversion Mechanisms

Table 14.7 Outputs of quantum-DNA 2-to-1 multiplexer operation 

|S.> |D1.> |D0.> Y 

|0.> |0.> |0.> TGGATC 

|0.> |0.> |1.> TGGATC 

|0.> |1.> |0.> ACCTAG 

|0.> |1.> |1.> ACCTAG 

|1.> |0.> |0.> TGGATC 

|1.> |0.> |1.> ACCTAG 

|1.> |1.> |0.> TGGATC 

|1.> |1.> |1.> ACCTAG 

From the Fig. 14.12, it is obvious that the Quantum-DNA 2-to-1 multiplexer con-
sists of three quantum operations and one DNA operation. Here, two AND and 
one NOT are used as Quantum operation and further one OR DNA operations is 
used. 

2. Working Procedure 
The working procedure of the Quantum-DNA 2-to-1 Multiplexer is given below 
for each pattern of input qubits. Here, DNA sequence ACCTAG .= TRUE for 
qubit |1 .> and DNA sequence TGGATC.= FALSE for qubit |0 . >. 
The working procedure of the Quantum-DNA 2-to-1 Multiplexer is given below 
for 4 patterns of input qubits and the outputs for different combinations of inputs 
are given in Table 14.7. 

1. For inputs S, D. 1, D. 0 .= 0, Y .= DNA OR (Quantum AND (D. 1, S), AND (NOT 
(S), D. 0)) 
.= DNA OR (Quantum AND (0, 0), AND (NOT (0), 0) 
.= DNA OR (0, 0) 
.= DNA OR (TGGATC, TGGATC) [Using NMR relaxation] 
.= TGGATC 

2. For inputs S, D. 0, D. 1 .= 0, 0, 1 Y .= DNA OR (Quantum AND (D. 1, S), AND 
(NOT (S), D. 0)) 
.= DNA OR (Quantum AND (1, 0), AND (NOT (0), 0) 
.= DNA OR (0, 0) 
.= DNA OR (TGGATC, TGGATC) [Using NMR relaxation] 
.= TGGATC 

3. For inputs S, D. 0, D. 1 . = 0, 1, 0 Y . =DNA OR (Quantum AND (D. 1, S), AND (NOT 
(S), D. 0)) 
.= DNA OR (Quantum AND (0, 0), AND (NOT (0), 1)) 
.= DNA OR (0, AND (1, 1) 
.= DNA OR (0, 1) 
.= DNA OR (TGGATC, ACCTAG) [Using NMR relaxation] 
.= ACCTAG



14.2 Data Conversion in Quantum-DNA Circuits 307

4. For inputs S, D. 0, D. 1 . = 0, 1, 1 Y . =DNA OR (Quantum AND (D. 1, S), AND (NOT 
(S), D. 0)) 
.= DNA OR (Quantum AND (1, 0), AND (NOT (0), 1)) 
.= DNA OR (0, AND (1, 1)) 
.= DNA OR (0, 1) 
.= DNA XOR (TGGATC, ACCTAG) [Using NMR relaxation] 
.= ACCTAG 

14.2.2 NMR Relaxation at 0 K 

NMR room temperature relaxation process is not fully suitable. In NMR relaxation at 
room temperature probes, decoherence problems, polarization, and scaling problems 
can occur. Because, it is known that noise is proportional to temperature. If noise 
is high, then the temperature will be high. In-room temperature NMR relaxation 
processes have high temperatures that’s why noise can be reached at high and that 
does not give us a full recovery sequence. And this problem solves the Cryogenic 
probe which operates at 0 K temperature. Here, the provided temperature is small 
and the noise is tiny. So, it is possible to get more recovery sequences from the 
superposition state. 

14.2.2.1 Quantum-DNA AND Operation at 0 K Temperature 

Figure 14.13 shows the conversion of the qubit to a DNA sequence from a quantum 
AND operation at 0 K temperature. The qubit output of AND gate passes through 
the NMR relaxation process to create a corresponding DNA sequence. The design 
and working procedure of the conversion of the qubit into DNA sequence from an 
AND operation are explained in this section. 

1. Design Procedure 
Quantum AND operation circuit is prepared using two V. + and two NOT and one 
V gate. Here three qubits |X.> and |Y.> and a constant qubit (ancilla) |0. >. From  
|A0.> and |A1.> inputs, two lines to constant output and target output line (|Q. >

.= XY). After getting qubit from quantum AND operation, NMR relaxation is 
applied. In NMR relaxation, a room temperature probe is used. By NMR relaxation 
qubit of superposition state turns into a normal ground state and produce the DNA 
sequence. Figure 14.13 shows Quantum-DNA AND operation using cryogenic 
probe at 0 K. 

2. Working Procedure 
At first, in this Quantum AND operational circuit, there are three inputs as qubits, 
two qubits are inputs in which the other is the ancilla qubit. Ancilla qubit is used 
here to reverse the gate. Ancilla qubit is also used for error correction and it is



308 14 Data Conversion Mechanisms

Fig. 14.13 Quantum-DNA AND operation using cryogenic probe at 0 K 

Table 14.8 Outputs of data conversion for quantum AND operation 

|X.> |Y.> |Q.> .= XY DNA sequence 

|0.> |0.> |0.> TGGATC 

|0.> |1.> |0.> TGGATC 

|1.> |0.> |0.> TGGATC 

|1.> |1.> |1.> ACCTAG 

called check qubit. Here in quantum AND gate, 0 is used because it helps to 
reverse the gate otherwise, it will be an error in output without an ancilla qubit. 
After processing input going through the quantum AND operation, it provides 
some output as a qubit. The provided output from quantum AND operation will 
be used as an input in NMR relaxation and the ground state is found. When any 
molecule comes to the ground state then the real sequence is produced. The DNA 
sequence is used for DNA logic gate operation. Here doing NMR relaxation is 
applied by using a cryogenic probe at 0 K temperature and in relaxation, it doesn’t 
need to emit EMR. 
Here, DNA sequence ACCTAG .= TRUE for quantum qubit |1 .> and DNA 
sequence TGGATC .= FALSE for quantum qubit |0 . >. The outputs for differ-
ent combinations of inputs are given in Table 14.8.



14.2 Data Conversion in Quantum-DNA Circuits 309

14.2.2.2 Quantum-DNA OR Operation at 0 K 

Figure 14.14 shows the conversion of the qubit to a DNA sequence from a quantum 
OR operation at 0 K temperature. The qubit output of OR operation passes through 
the NMR relaxation process to create a corresponding DNA sequence. The design 
and the working procedure of the conversion of the qubit into DNA sequence from 
a quantum OR operation are explained in this section. 

1. Design Procedure 
Quantum OR operation circuit is prepared using two V.+ and two V gates, three 
qubits |X.> and |Y.> and a constant qubit (ancilla) |0 . >. From |X  .> and |Y . >
inputs, two lines to constant output and the target output line (|Q.> . = X. + Y) can 
be expressed as X .+ Y. After getting qubit from quantum OR operation, NMR 
relaxation is applied. In NMR relaxation, a room temperature probe is used. By 
NMR relaxation qubit of superposition state turns into a normal ground state and 
the DNA sequence has produced. 

2. Working Procedure 
At first, in this quantum OR operational circuit, there are three inputs as qubits, 
two qubits are input and the other is the ancilla qubit. Here in quantum OR gate, 
|0.> is used as an ancilla qubit because without this qubit it is not possible to 
reverse the gate and an error will come in output without an ancilla qubit. 
After processing input going through the quantum OR operation, it’s getting some 
outputs as qubits. The provided output from quantum OR operation will be used 
as an input in NMR relaxation and the ground state is found. When any molecule 

Fig. 14.14 Quantum-DNA OR operation using cryogenic probe at 0 K



310 14 Data Conversion Mechanisms

comes to the ground state then the real sequence is found. The DNA sequence is 
used for DNA operation. Here doing NMR relaxation using a cryogenic probe at 
0 K and in relaxation, it doesn’t need to emit EMR. 
Here, DNA sequence ACCTAG .= TRUE for qubit |1 .> and DNA sequence 
TGGATC .= FALSE for qubit |0 . >. The outputs for different combinations of 
inputs are given in Table 14.2. 

14.2.2.3 Quantum-DNA XOR Operation at 0 K 

Figure 14.15 shows the conversion of the qubit to a DNA sequence from a quantum 
XOR operation at 0 K temperature. The qubit output of XOR operation passes through 
the NMR relaxation process to create a corresponding DNA sequence. The design 
and working procedure of the conversion of the qubit into DNA sequence from an 
XOR operation are explained in this sections. 

1. Design Procedure 
Quantum XOR operation circuit is prepared using one Controlled NOT or CNOT 
gate. Here, there are two qubits |X.> and |Y. >. From |Y  .> inputs, one line goes 
through the output and the target output is X XOR Y. After getting qubit from 
quantum XOR operation, NMR relaxation is needed. In NMR relaxation, a room 
temperature probe is used. By NMR relaxation qubit of superposition state turns 
into a normal ground state and DNA sequence is obtained. 

2. Working Procedure 
At first, in this Quantum XOR operational circuit, there aretwo inputs work as 
qubits and no need of any ancilla qubits. After processing input going through the 
Quantum XOR operational gate, it’s getting some output as a qubit. The provided 

Fig. 14.15 Quantum-DNA XOR operation using cryogenic probe at 0 K



14.2 Data Conversion in Quantum-DNA Circuits 311

output from Quantum OR operation will be used as an input in NMR relaxation 
and find the ground state. When any molecule comes to the ground state then 
the real sequence is found. The DNA sequence is used for DNA operation. Here 
doing NMR relaxation using a cryogenic probe at 0 K and in relaxation, it doesn’t 
need to emit EMR. 
Here, DNA sequence ACCTAG .= TRUE for qubit |1 .> and DNA sequence 
TGGATC .= FALSE for qubit |0 . >. The outputs for different combinations of 
inputs are given in Table 14.4. 

14.2.2.4 Quantum-DNA Full Adder at 0 K 

In Sect. 14.2.1, Quantum-DNA Full Adder and its working procedure are described 
already but here the design procedure of Quantum-DNA Full Adder by using a 
Cryogenic probe will be described. The output of different combinations is also 
shown in Table 14.5. 

1. Design Procedure 
To design a Quantum-DNA Full Adder, Quantum and DNA operations are used to 
operate the input qubit for their corresponding outputs. The Quantum operations 
will be used for receiving the input qubits and the DNA operations will be used 
to produce the final output against the corresponding set of inputs. Each time, the 
Quantum-DNA Full Subtractor will receive three qubits as input. After operating 
in a certain number of Quantum operations, the qubit will be turned into a cor-
responding DNA sequence by NMR relaxation using a cryogenic probe at 0 K. 
The process of producing a DNA sequence against a qubit state is explained in 
Sect. 14.2.1. By using a cryogenic probe at 0 K and corresponding components 
of NMR relaxation, the excited qubit turns into a ground state and produces a 
DNA sequence. Then the DNA sequence is processed through DNA operations 
and outputs are received. Here, Fig. 14.16 describes Quantum-DNA Full Adder 
using Quantum and DNA operations. 
From the Fig. 14.16, it is found that the Quantum-DNA Full Adder consists of 
three Quantum operations and two DNA operations. Here, two AND and one 
XOR are used as Quantum operations and further one XOR and one OR DNA 
operations are used. 

14.2.2.5 Quantum-DNA Full Subtractor at 0 K 

In Sect. 14.2.1, Quantum-DNA Full Subtractor and its working procedure are 
described already but here the design procedure of Quantum-DNA Full Subtrac-
tor using Cryogenic probe will be discused. The output of different combinations is 
also shown in Table 14.6. 

To design a Quantum-DNA Full Subtractor, Quantum and DNA operations are 
used to operate the input qubit for their corresponding outputs. The Quantum oper-



312 14 Data Conversion Mechanisms

Fig. 14.16 Quantum-DNA full adder using cryogenic probe at 0 K 

ations will be used for receiving the input qubits and the DNA operations will 
be used to produce the final output against the corresponding set of inputs. Each 
time, the Quantum-DNA Full Subtractor will receive three qubits as input. Here, 
Fig. 14.17 describes Quantum-DNA Full Subtractor using Quantum and DNA oper-
ations. 

After operating in a certain number of Quantum operations, the qubit will be 
turned into a corresponding DNA sequence by using NMR relaxation using a Cryo-
genic probe at 0 K. The process of producing a DNA sequence against a qubit state is 
explained in Sect. 8.2.1. By using a Cryogenic probe at 0 K and corresponding com-
ponents of NMR relaxation, the excited qubit turns into ground state and produces a 
DNA sequence. Then the DNA sequence is processed through DNA operations and 
outputs are received. 

From the Figure, it is obvious that the Quantum-DNA Full Subtractor consists of 
three Quantum operations and two DNA operations. Here, two AND and one XOR 
are used as Quantum operations and further one XOR and one OR DNA operations 
are used.



14.2 Data Conversion in Quantum-DNA Circuits 313

Fig. 14.17 Quantum-DNA full subtractor using cryogenic probe at 0 K 

14.2.2.6 Quantum-DNA 2-to-1 Multiplexer Circuit at 0 K 

In Sect. 14.2.1.9, Quantum-DNA 2-to-1 Multiplexer and its working procedure are 
already highlighted. Overall, the design procedure of Quantum-DNA Multiplexer 
using Cryogenic probe is illustrated in Fig. 14.18. 

To design a Quantum-DNA 2-to-1 Multiplexer, Quantum and DNA operations 
are used to operate the input qubit for their corresponding outputs. The Quantum 
operations will be used for receiving the input qubits and the DNA operations will be 
used to produce the final output against the corresponding set of inputs. Each time, 
the Quantum-DNA Multiplexer will receive three qubits as input. After operating in 
a certain number of Quantum operations, the qubit will be turned into a correspond-
ing DNA sequence by NMR relaxation using a Cryogenic probe at 0 K. The process 
of producing a DNA sequence against a qubit state is explained in Sect. 14.2.1. 
By using a Cryogenic probe at 0 K and corresponding components of NMR relax-
ation, the excited qubit turns into ground state and produces a DNA sequence. Then 
the DNA sequence is processed through DNA operations and outputs are received. 
Here, Fig. 14.18 describes Quantum-DNA Multiplexer using Quantum and DNA 
operations. 

From the figure, the Quantum-DNA 2-to-1 Multiplexer consists of three quantum 
operations and one DNA operations. Here, two AND, one NOT are used as Quantum 
operations and further one OR DNA operations are used.



314 14 Data Conversion Mechanisms

Fig. 14.18 Quantum-DNA full 2-to-1 multiplexer using cryogenic probe at 0 K 

14.2.2.7 Quantum-DNA Multiplier Circuit at 0 K 

A binary multiplier is a combinational logic circuit or digital device used for multi-
plying two binary numbers. The two numbers are more specifically known as mul-
tiplicand and multiplier and the result is known as a product. The multiplicand and 
multiplier can be of various bit sizes. The product’s bit size depends on the bit size 
of the multiplicand & multiplier. The bit size of the product is equal to the sum 
of the bit size of the multiplier multiplicand. To create a quantum-DNA multiplier 
circuit, four AND operations in quantum, two XOR and, two AND DNA operational 
gates are required. Figure 14.19 describes the quantum-DNA circuit of the 2-qubit 
multiplication. 

1. Design Procedure 
To design a Quantum-DNA Multiplier, it needs to use Quantum and DNA oper-
ations to operate the input qubit for their corresponding outputs. The Quantum 
operations will be used for receiving the input qubits and the DNA operations 
will be used to produce the final output against the corresponding set of inputs. 
Each time, the Quantum-DNA Multiplier will receive four qubits as input. After 
operating in a certain number of Quantum operations, the qubit will be turned into 
a corresponding DNA sequence by NMR relaxation using a Cryogenic probe at 
0 K. The process of producing a DNA sequence against a qubit state is explained 
in Sect. 14.2.1. By using a Cryogenic probe at 0 K and corresponding components 
of NMR relaxation, the excited qubit turns into ground state and produces a DNA 
sequence. Then the DNA sequence is processed through DNA operations and 
outputs are received. Here, Fig. 14.19 describes Quantum-DNA Multiplier using 
Quantum and DNA operations.



14.2 Data Conversion in Quantum-DNA Circuits 315

Fig. 14.19 Quantum-DNA multiplier operational circuit 

From the quantum-DNA circuit in Fig. 14.19, four AND quantum operation cir-
cuits perform with qubits. The output of all quantum operation goes through NMR 
relaxation at 0 K. It produces DNA sequence as an output and it can be used as 
an input in all DNA operational circuits. In the DNA operational circuit, it uses 
two DNA AND and two DNA XOR operations. 

2. Working Procedure 
The working procedure of the quantum-DNA multiplier is given below for each 
pattern of input qubits. Here, DNA sequence ACCTAG .= TRUE for qubit |1 . >
and DNA sequence TGGATC.= FALSE for qubit |0 . >.



316 14 Data Conversion Mechanisms

The working procedure of the quantum-DNA multiplier is given below for 4 
patterns of input qubits and the outputs for different combinations of inputs are 
given in Table 14.9. 

1. For inputs A. 0, A. 1, B. 0, B. 1 .= 0, .C0 .= DNA (Quantum AND (A. 0, B. 0)) 
.= DNA (Quantum AND (0, 0)) 
.= DNA (0) 
.= TGGATC [Using NMR relaxation] 
.C1 .= DNA XOR (Quantum AND (A. 0, B. 1), Quantum AND (A. 1, B. 0)) 
.= DNA XOR (Quantum AND (0, 0), AND (0, 0) 
.= DNA XOR (0, 0) 
.= DNA XOR (TGGATC, TGGATC) [Using NMR relaxation] 
.= TGGATC 
.C2 .= DNA XOR (DNA AND (Quantum AND (A. 0, B. 1), Quantum AND (A. 1, 
B. 0)), Quantum AND (A. 1, B. 1)) 
. =DNA XOR (DNA AND (Quantum AND (0, 0), Quantum AND (0, 0)), Quantum 
AND (0, 0)) 
.= DNA XOR (DNA AND (0, 0), 0) 
. =DNA XOR (DNA AND (TGGATC, TGGATC), TGGATC) [Using NMR relax-
ation] 
.= DNA XOR (TGGATC, TGGATC) 
.= TGGATC 
.C3 .= DNA AND (DNA AND (Quantum AND (A. 0, B. 1), Quantum AND (A. 0, 
B. 1)), Quantum AND (A. 1, B. 1)) 
. =DNA AND (DNA AND (Quantum AND (0, 0), Quantum AND (0, 0)), Quantum 
AND (0, 0)) 
.= DNA AND (DNA AND (0, 0), 0) 
. =DNA AND (DNA AND (TGGATC, TGGATC), TGGATC) [Using NMR relax-
ation] 
.= DNA AND (TGGATC, TGGATC) 
.= TGGATC 

2. For inputs A. 0, A. 1, B. 0, B. 1 .= 1, 1, 1, 0 .C0 .= DNA (Quantum AND (A. 0, B. 0)) 
.= DNA (Quantum AND (1, 1)) 
.= DNA 
.= ACCTAG [Using NMR relaxation] 
.C1 .= DNA XOR (Quantum AND (A. 0, B. 1), Quantum AND (A. 1, B. 0)) 
.= DNA XOR (Quantum AND (1, 0), AND (1, 1) ) 
.= DNA XOR (0, 1) 
.= DNA XOR (TGGATC, ACCTAG) [Using NMR relaxation] 
.= ACCTAG 
.C2 .= DNA XOR (DNA AND (Quantum AND (A. 0, B. 1), Quantum AND (A. 1, 
B. 0)), Quantum AND (A. 1, B. 1)) 
. =DNA XOR (DNA AND (Quantum AND (1, 0), Quantum AND (1, 1)), Quantum 
AND (1, 0)) 
.= DNA XOR (DNA AND (0, 1), 0)



14.2 Data Conversion in Quantum-DNA Circuits 317

. =DNA XOR (DNA AND (TGGATC, ACCTAG), TGGATC) [Using NMR relax-
ation] 
.= DNA XOR (TGGATC, TGGATC) 
.= TGGATC 
.C3 .= DNA AND (DNA AND (Quantum AND (A. 0, B. 1), Quantum AND (A. 1, 
B. 0)), Quantum AND (A. 1, B. 1)) 
. =DNA AND (DNA AND (Quantum AND (1, 0), Quantum AND (1, 1)), Quantum 
AND (1, 0)) 
.= DNA AND (DNA AND (0, 1), 0) 
. =DNA AND (DNA AND (TGGATC, ACCTAG), TGGATC) [Using NMR relax-
ation] 
.= DNA AND (TGGATC, TGGATC) 
.= TGGATC 

3. For inputs A. 0, A. 1, B. 0, B. 1 .= 1, 1, 1, 1 .C0 .= DNA (Quantum AND (A. 0, B. 0)) 
.= DNA (Quantum AND (1, 1)) 
.= DNA 
.= ACCTAG [Using NMR relaxation] 
.C1 .= DNA XOR (Quantum AND (A. 0, B. 1), Quantum AND (A. 1, B. 0)) 
.= DNA XOR (Quantum AND (1, 1), AND (1, 1) ) 
.= DNA XOR (1, 1) 
.= DNA XOR (ACCTAG, ACCTAG) [Using NMR relaxation] 
.= TGGATC 
.C2 .= DNA XOR (DNA AND (Quantum AND (A. 0, B. 1), Quantum AND (A. 1, 
B. 0)), Quantum AND (A. 1, B. 1) )  
. =DNA XOR (DNA AND (Quantum AND (1, 1), Quantum AND (1, 1)), Quantum 
AND (1, 1) ) 
.= DNA XOR (DNA AND (1, 1) ,1) 
. =DNA XOR (DNA AND (ACCTAG, ACCTAG), ACCTAG) [Using NMR relax-
ation] 
.= DNA XOR (ACCTAG, TGGATC) 
.= TGGATC 
.C3 .= DNA AND (DNA AND (Quantum AND (A. 0, B. 1), Quantum AND (A. 1, 
B. 0)), Quantum AND (A. 1, B. 1) )  
. =DNA AND (DNA AND (Quantum AND (1, 1), Quantum AND (1, 1)), Quantum 
AND (1, 1) ) 
.= DNA AND (DNA AND (1, 1) ,1) 
. =DNA AND (DNA AND (ACCTAG, ACCTAG), ACCTAG) [Using NMR relax-
ation] 
.= DNA AND (ACCTAG, ACCTAG) 
.= ACCTAG 

4. For inputs A. 0, A. 1, B. 0, B. 1 .= 1, 1, 0, 1 .C0 .= DNA (Quantum AND (A. 0, B. 0)) 
.= DNA (Quantum AND (1, 0)) 
.= DNA (0) 
.= TGGATC [Using NMR relaxation] 
.C1 .= DNA XOR (Quantum AND (A. 0, B. 1), Quantum AND (A. 1, B. 0))



318 14 Data Conversion Mechanisms

.= DNA XOR (Quantum AND (1, 1), AND (1, 0)) 

.= DNA XOR (1, 1) 

.= DNA XOR (ACCTAG, TGGATC) [Using NMR relaxation] 

.= ACCTAG 

.C2 .= DNA XOR (DNA AND (Quantum AND (A. 0, B. 1), Quantum AND (A. 1, 
B. 0)), Quantum AND (A. 1, B. 1)) 
. =DNA XOR (DNA AND (Quantum AND (1, 1), Quantum AND (1, 0)), Quantum 
AND (1, 1)) 
.= DNA XOR (DNA AND (1, 0), 1) 
. =DNA XOR (DNA AND (ACCTAG, TGGATC), ACCTAG) [Using NMR relax-
ation] 
.= DNA XOR (TGGATC, ACCTAG) 
.= ACCTAG 
.C3 .= DNA AND (DNA AND (Quantum AND (A. 0, B. 1), Quantum AND (A. 1, 
B. 0)), Quantum AND (A. 1, B. 1)) 
. =DNA AND (DNA AND (Quantum AND (1, 1), Quantum AND (1, 0)), Quantum 
AND (1, 1)) 
.= DNA AND (DNA AND (1, 0), 1) 
. =DNA AND (DNA AND (ACCTAG, TGGATC), ACCTAG) [Using NMR relax-
ation] 
.= DNA AND (TGGATC, ACCTAG) 
.= TGGATC (Table 14.9) 

Table 14.9 Outputs of quantum-DNA multiplier operation 

|A.0> |A.1 > |B. 0 .> |B.1 > C.3 C.2 C.1 C. 0

|0.> |0.> |0.> |0.> TGGATC TGGATC TGGATC TGGATC 

|0.> |0.> |0.> |1.> TGGATC TGGATC TGGATC TGGATC 

|0.> |0.> |1.> |0.> TGGATC TGGATC TGGATC TGGATC 

|0.> |0.> |1.> |1.> TGGATC TGGATC TGGATC TGGATC 

|0.> |1.> |0.> |0.> TGGATC TGGATC TGGATC TGGATC 

|0.> |1.> |0.> |1.> TGGATC TGGATC TGGATC ACCTAG 

|0.> |1.> |1.> |0.> TGGATC TGGATC ACCTAG TGGATC 

|0.> |1.> |1.> |1.> TGGATC TGGATC ACCTAG ACCTAG 

|1.> |0.> |0.> |0.> TGGATC TGGATC TGGATC TGGATC 

|1.> |0.> |0.> |1.> TGGATC TGGATC ACCTAG TGGATC 

|1.> |0.> |1.> |0.> TGGATC ACCTAG TGGATC TGGATC 

|1.> |0.> |1.> |1.> TGGATC ACCTAG ACCTAG TGGATC 

|1.> |1.> |0.> |0.> TGGATC TGGATC TGGATC TGGATC 

|1.> |1.> |0.> |1.> TGGATC TGGATC ACCTAG ACCTAG 

|1.> |1.> |1.> |0.> TGGATC ACCTAG ACCTAG TGGATC 

|1.> |1.> |1.> |1.> ACCTAG TGGATC TGGATC ACCTAG



14.2 Data Conversion in Quantum-DNA Circuits 319

14.2.3 Trapped Ion 

An ion trap is actually an ‘electric-field-test-tube’ that contains gaseous ions. These 
gaseous ions can be either positively charged or negatively charged. The two most 
common ion traps are the Penning trap that is used as a combinational via of electric 
and magnetic fields, and the other one is Paul trap which is used as a combinational 
via of static and oscillating electric fields. In this section, the Paul trap will be used 
for the above purpose. Paul traps are commonly used as components of a mass 
spectrometer. But here this is used as a little bit different way to reach the desired 
destination. The Ion trap procedure is shown in Fig. 14.20. 

14.2.3.1 Components of Trapped Ions 

Trap Ion circuit is shown in Fig. 14.21. For trapping an ion, the following given 
components are needed: 

1. A Bunch of Atoms 
As an atom, calcium can be considered. If calcium is taken in a test tube and 
removed all air from that tube it (calcium) looks shiny because it’s taken out in 
the air which cannot react with oxygen. 

Fig. 14.20 Trapped Ion, used for experiments towards realizing a quantum computer



320 14 Data Conversion Mechanisms

Fig. 14.21 Trapped ion 
circuit 

2. An Ultra-High Vacuum System 
In a vacuum, ions are trapped. It is used so that any oxygen cannot bump with 
calcium. If oxygen plops with calcium, trap ions will not work properly. That is 
why this vacuum system is used to suck all air from surrounding the trap ion. 

3. Calcium Oven 
A metallic tube is used to run electricity outside the vacuum so that calcium can 
be heated and it can be converted into vapor gas that spreads the whole trap is 
actually called a calcium oven. 

4. Laser 
When a laser is applied to the electron that rotates around the nucleus, it flips the 
one outer electron that is actually an ion. 

5. End-Cap Electrodes 
Leading the trap, ion accumulation basically allows efficient ions to hold the 
injected ions with low kinetic energies. In this case, end-cap electrodes carry 
small DC voltages. However, these DC potentials are used to trap ions in the axial 
dimension. 

6. Blade Electrodes 
The trap consists of four blade-shaped electrodes of which two opposing ones are 
connected to an RF voltage while the other two are connected to the ground. It 
also includes two end-cap electrodes that are connected to a positive DC voltage. 

14.2.3.2 Working Principle of Trapped Ions 

In Paul trap, an oscillating electric potential usually combined with a static compo-
nent, U. 0 +V. 0 cos. �t, is applied between the ring and the pair of end-cap electrodes. 
It creates a potential of the form



14.2 Data Conversion in Quantum-DNA Circuits 321

.� .= U. 0 +V. 0 cos. �t 2d. 2 (r. 2 . −2z. 2) 
Since the trapping field is inhomogeneous, the average force acting on the particle, 
taken over many oscillations of the field, is not zero. Depending on the amplitude and 
frequency of the field, the net force may be convergent toward the center of the trap 
leading to confinement or divergent leading to the loss of the particle. Thus, although 
the electric force alternately causes convergent and divergent motion of the particle 
in any given direction, it is possible by appropriate choice of field amplitude and 
frequency to have a time-averaged restoring force in all three dimensions toward the 
center of the trap as required for confinement. The conditions for stable confinement 
of an ion with mass M and charge Q in the Paul field may be derived by solving the 
equation of motion: 

. ∂2u . ∂t. 2 .= Q Md. 2 (U. 0 +V. 0 cos. �t) u 
u .= x, y, z. 

The three-dimensional limitation of charged particles is the minimum possible force 
at any stage of space so that the corresponding force is directed to three dimensions. 
In general, there may be a voluntary form of dependence of the magnitude of this arm 
on coordinates; however, it is advantageous to have a binding force with a condition, 
as it simplifies the analytical description of particle motion. Thus, it is assumed that 

.F∝−r (14.1) 

It follows from 

.F = −gradU (14.2) 

Where U .= Q.� is the potential energy, that in general the required function .� is a 
quadratic form in the Cartesian coordinates x, y, and z: 

.� = �0/d
2(Ax2 + By2 + Cz2) (14.3) 

where A, B, and C are constants, d is a normalizing factor, and .�0 can be a time-
dependent function. If an attempt is made to achieve such a constraint by using an 
electric field acting on an ion of charge Q, it is found that to satisfy Laplace’s equation 
.�� .= 0, the coefficients must satisfy A .+ B .+ C .= 0. For the interesting case of 
rotational symmetry around the z-axis, this leads to A .= B.= 1 and C .= . −2, giving 
us the quadrupolar form 

.� = �0d
2(x2 + y2−2z2) = �0d

2(ρ2−2z2) (14.4) 

with .ρ2 = x. 2 +y. 2. If the radial distance from the center (.ρ .= z .= 0) of a hyperbolic 
trap to the ring electrode is called r. 0, and the axial distance to an end-cap is z. 0, the  
equations for the hyperbolic electrode surfaces are



322 14 Data Conversion Mechanisms

Fig. 14.22 Basic arrangement for paul and penning traps (a). For static trapping, cylindrical penning 
traps are used (b) 

.ρ2−2z2 = r0
2 (14.5) 

.ρ2−2z2 = −2z0
2 (14.6) 

If the potential difference between the ring and end-caps is taken to be .ϕ0, then 

.d2 = r0
2 + 2z0

2 (14.7) 

From the difference in the symptoms between the radial and axial terms, it is seen 
that the source of probability has a saddle point, with one coordinate being minimum 
but the other being maximum. Earnshaw’s theorem states that it is not possible to 
create minimum electronic possibilities in empty space. Nevertheless, it is possible 
to propagate Earnshaw’s theorem by superimposing a magnetic field along the z-axis 
to create what is called a Penning trap or trap Paul using a time-dependent electric 
field. 

The electrons that make up a quadrilateral possibility contain three hyperbolic 
sheets of revolution: a ring electrode and two end-caps (Fig. 14.22(a)) which share the 
same asymptotic cone. The size of the device, in a variety of applications, ranges from 
a few centimeters for a fraction of the characteristic dimension d to one millimeter. 
The trapped charged particles are confined to a very area of the trap, the location of 
which can be centered using an additional dc field. 

In recent years, various trap geometries have become commonplace that are easy 
to produce and align and allow optical access to the trapped particles without further 
modification (Fig. 14.22(b)): linear Paul traps that use four parallel rods electroni-
cally. An AC voltage applied between adjacent electrodes leads to similar dynamic 
prison in the three-dimensional case. Axial captures are supplied by a static voltage 
to the end electrodes. 

The internal electrode surfaces are hyperboloids. The dynamic stabilization in the 
Paul trap is given by an AC voltage V. 0 cost. The static stabilization in the Penning 
trap is given by a DC voltage U .= U. 0 and an axial magnetic field. A photograph of 
a trap with. ρ .= 1 cm is given. One of the endcaps is formed as mesh to allow optical 
access to trapped ions (Fig. 14.23).



14.2 Data Conversion in Quantum-DNA Circuits 323

Fig. 14.23 Linear paul trap (a) and Open end-cap cylindrical penning trap (b) 

A radio-frequency field applied to the rods of the linear Paul trap confines charged 
particles in the radial direction, DC voltage at the end segments serves for radial 
trapping. The Penning trap has guard electrodes between the central ring and the 
endcaps to compensate partly for deviations from the ideal quadrupole potential near 
the trap center. Ion excitation can be performed by RF fields applied to segments of the 
electrodes. These electrode geometries produce a harmonious binding force near the 
exact center of the classical form. Further away from the source, potentially higher 
order will become significant. For cylindrical Penning traps, this can be partially 
reduced by additional compensating electrodes placed between the ring and end-
caps as shown in Fig. 14.23. 

14.2.3.3 Quantum-DNA AND Operation 

Figure 14.24 shows the quantum-DNA AND operation using trap ion. The qubit 
output of the quantum NAND operation passes through the trap ion to get the cor-
responding DNA sequence. The obtained DNA sequence then passes through the 
DNA NOT operation to get the output of the quantum-DNA NAND gate operation. 
The design and the working procedures of the quantum-DNA AND operation are 
explained in the this sections. 

1. Design Procedure 
In this section, a method is established to make an AND gate by combining a 
quantum gate a and DNA gate. This new gate is called the quantum-DNA AND 
gate. In this circuit, the following terms are used: 
Quantum NAND Gate Operation 
The AND gate is easily formed from the NAND gate. After that, doing NOT gate 
of NAND gate, AND gate is possible to achieve. In this quantum gate, constant 
1 which acts as the target bit has been assumed. If 0 is considered as a target 
bit then output will always be the reverse of the desired output. For example, in



324 14 Data Conversion Mechanisms

Fig. 14.24 Quantum-DNA AND operation 

quantum NAND gate, the target bit is assumed as 0 then for control bit |1.> and 
|1. > combination the 1. st v. + gate will work which is connected with |B. >(|1. >). For 
being target bit 0 the v.+ gate will be small w. The 2.nd v gate will work when the 
|A. > value is |1. > and the CNOT from of |B. > is 1. In the |1. > and |1. > combination 
the |A.> is |1.> but CNOT form of |B.> is 0. So, the middle gate will not change. 
So, in this gate, the previous qubit (small v) is achieved where the 1. st v.+ gate 
is placed. Now, the last v.+ gate is connected with |A.> (|1. >). As a result, this 
gate value will change. For small w the last v.+ gate will be 1 which violates the 
NAND gate truth table. Because for |1.> and |1.> combination the output should 
always be 0. But in quantum gates, if the target bit is assumed 0, the output is the 
reverse of real output. Not only for the NAND gate but also all gates it will show 
reverse output of their real output. That is why, in a quantum circuit, the target bit 
is always assumed 1. 
Ion trap 
After quantum NAND gate operation, ion has been trapped for doing motional 
gate. 
DNA NOT Gate Operation 
Based on motional gate a DNA NOT operation has been performed to get AND 
gate. 

2. Working Principle 
To the execute quantum-DNA AND gate, the following steps are performed. 

(a) First of all, Quantum NAND gate is performed here where |A.> and |B.> act 
as control bit and |1.> acts as the a target bit that is constant here. Target bit 
will work when the control bit |A.> or |B.> is 1, otherwise it (target bit) will



14.2 Data Conversion in Quantum-DNA Circuits 325

remain the same. For example, if both control qubits (|A. > and |B. >) is 0, there 
will be no change in V or V.+ gate. That is the reason of target bit will also 
remain same and that will be the NAND gate output (|1. >). But if the control 
qubits |A.> and |B.> correspond to |0 .> and |1.> respectively, then 1st V. +
gate will work as it is connected with |A1. >. However, from V and V.+ truth 
table, it is seen that for control bit. <A1|(. <1|), V. + gate will be W. The middle 
gate is V. This gate will work when the CNOT gate is active. On the other 
hand, CNOT gate will work when |A.> is 1. If CNOT gate is active, the qubit 
of |B.> will change and the middle V gate will work. But in this circuit, for 
being |A.> is 0, the CNOT gate will never active and control bit |B.> will not 
be able to change its qubit. As a result, the middle V gate will not work. But 
the last V.+ gate is connected with control bit |A. >. In this combination, for 
|A. >=1, gates V for V.+ and for V the last V.+ gate will be 1 that is shown in 
Table 14.10. This 1 is actually quantum NAND gate output for control qubit 
|A.> (|0. >) and |B.> (|1. >). Similarly, all combinations of NAND gates will 
work. 

(b) For each combination, the NAND gate will produce one qubit which will be 
injected in the trap ion and in the trap, ion there already will be kept Ca. + ion. 
Comparing Quantum qubit and Ca. + ion qubit, they make either a motional 
gate or no motional gate. 

Depending on the motional gate a bulb is opened. If it is a motional gate then 
ACCTAG tube will open where ACCTAG DNA sequence represents true or 1. 
On the other hand, if it is not a motional gate TGGATC DNA sequence tube will 
open which represents 0 or false. Now, its turn to do DNA NOT gate. In DNA 
NOT gate, a base DNA sequence (ACCTAG) is kept. This sequence will react 
with that sequence and will come from the bulb. If they make a bond, it will give 
output 1. Otherwise, it will give output 0. 
Truth table of V and V. + gate is shown in Table 14.10 and truth table of quantum-
DNA AND operation is given in Table 14.11. 

Table 14.10 Truth table of V and V.+ gates 

A(control) B(target) Q1(V gate) Q1(V.+ gate) 

|0.> X X X 

|1.> 0 v w 

|1.> 1 V W 

|1.> v 1 0 

|1.> V 0 1 

|1.> w 0 1 

|1.> W 1 0



326 14 Data Conversion Mechanisms

Table 14.11 Truth table of quantum-DNA AND operation 

Control bit |A.> Control bit |B.> Target bit(const) |1.> Output 

|0.> |0.> |1.> TGGATC 

|0.> |1.> |1.> TGGATC 

|1.> |0.> |1.> TGGATC 

|1.> |1.> |1.> ACCTAG 

14.2.3.4 Quantum-DNA OR Operation 

Figure 14.25 shows the quantum-DNA OR operation using trap ion. The qubit output 
of the quantum NOR operation passes through the trap ion to get the corresponding 
DNA sequence. The obtained DNA sequence then passes through the DNA NOT 
operation to get the output of the quantum-DNA OR gate operation. The design and 
working procedures of the quantum-DNA OR gate operation are explained in this 
sections. 

1. Design Procedure 
In this portion, an OR gate is formed by combining quantum gate and DNA gate. 
And this new gate is called the quantum-DNA gate. In this circuit, the following 
terms are made. 
Quantum NOR Gate Operation 
The OR gate is easily formed from the NOR gate. After that, doing NOT gate using 
NOR gate, OR gate is also possible to achieve. In this quantum gate, Constant 

Fig. 14.25 Quantum-DNA OR operation



14.2 Data Conversion in Quantum-DNA Circuits 327

|1.> which acts as the target bit has been assumed. If 0 is considered as a target 
bit then output will always be the reverse of real output. 
Trapped Ion 
After quantum NOR gate operation, Ion has been trapped for doing motional gate. 
DNA NOT Gate Operation 
Based on motional gate a DNA NOT gate operation has been performed to get 
OR gate. 

2. Working Principle 
In the quantum-DNA OR gate, the following steps are performed: 

(a) First of all, Quantum NOR gate is performed here where |A.> and |B.> act 
as the control qubit and |1.> acts as a target bit that is constant here. Target 
bit will work when the control qubit |A.> or |B.> is 1, otherwise it (target bit) 
will remain the same. For example, if both control qubit (|A.> and |B. >) is 0,  
Then output will be exactly that qubit which is considered as a target qubit. 
That is why for |0.> and |0.> combination, NOR gate output will be (|1. >). 
But if control qubit |A.> and |B.> are respectively |1 .> and |1.> then 1st V 
gate will work as it is connected with |B. >. For being target bit 1, the v gate 
will be now big V that is shown in V and V.+ truth table and for big V the 
2nd v gate which is connected with |A.> (|1. >) will be 0. In this circuit last v 
gate will work when the CNOT form of |B. > and |A. > is |1. >. But  for |1. > and 
|1.> combinations |A.> is |1.> but CNOT form of |B.> is 0 as control bit of 
|B.> is |1. >. That is why, ultimately 0 will be got as the output that basically 
had been achieved from the middle v gate. Not only for this gate but also all 
gates will work like this. 

(b) For each combination, the NOR gate will produce one qubit which will be 
injected in the trap ion and in the trap ion there already will be kept Ca+ ion. 
Comparing Quantum qubit and Ca.+ ion qubit, they make either a motional 
gate or non-motional gate. 

(c) Depending on the motional gate a bulb is opened. If it is a motional gate then 
ACCTAG tube will open where ACCTAG represents true or 1. On the other 
hand, if it is not a motional gate TGGATC will open which represents 0 or 
false. Now, its turn to do DNA NOT gate. In DNA NOT gate, a base DNA 
sequence (ACCTAG) is kept. This sequence will react with that sequence 
and it will come from the bulb. If they make a bond, it will give output 1. 
Otherwise, it will give output 0. 

The truth table of V and V.+ gates is shown in Table 14.12 and truth table of 
quantum-DNA OR operation is given in Table 14.13.



328 14 Data Conversion Mechanisms

Table 14.12 Truth table of V and V.+ gates 

A(control) B(target) Q0(V gate) Q1(V.+ gate) 

|0.> X X X 

|1.> 0 v w 

|1.> 1 V W 

|1.> v 1 0 

|1.> V 0 1 

|1.> w 0 1 

|1.> W 1 0 

Table 14.13 Truth table of quantum-DNA OR operation 

Control bit |A.> Control bit |B.> Target bit(const) |1.> Output 

|0.> |0.> |1.> TGGATC 

|0.> |1.> |1.> ACCTAG 

|1.> |0.> |1.> ACCTAG 

|1.> |1.> |1.> ACCTAG 

14.3 Data Conversion in DNA-Quantum Circuits 

In place of standard silicon-based computer technology, DNA computing uses biolog-
ical components such as DNA, biochemistry, and molecular biology. When applied to 
issues that can be separated into independent, non-sequential tasks, the DNA com-
puter has demonstrable benefits over conventional computers. The reason for this 
is because DNA strands can store a lot of data and do numerous operations at the 
same time, allowing them to solve decomposable issues considerably faster. On the 
other hand, the fastest computation system can be defined as a Quantum computation 
system, which works with qubits |1 . >, |0  . >, and both |1 .> and |0 .> works at the 
same time. In addition, Quantum computer calculations are especially promising for 
analyzing or simulating extremely complicated processes involving large volumes 
of data. 

So, to find a super fast computation system with huge memory, a DNA-Quantum 
computation system can be developed. This DNA-Quantum computation system can 
merge all advantages of quantum computing and DNA computing. It will be able to 
compute parallel operations at super-fast speed. In a DNA-Quantum circuit, operate 
inputs by DNA operations and provide output in qubits. In this case, it needs to use 
NMR for converting DNA sequences to quantum qubits. Section 14.3.1 will describe 
the procedure for converting DNA sequence to the qubit.



14.3 Data Conversion in DNA-Quantum Circuits 329

14.3.1 Nuclear Magnetic Resonance 

The acronym Nuclear Magnetic Resonance (NMR) stands for Nuclear Magnetic 
Resonance, which is an analytical chemical technique that allows us to examine 
comprehensive information about molecules. NMR is a technique for observing how 
molecules behave and interact in a variety of materials. NMR is used in quality control 
and research to determine the content and purity of a sample as well as its molecular 
structure. NMR is a physical phenomenon in which electromagnetic radiation is 
absorbed and emitted by the nucleus under a magnetic field. NMR generates a strong 
magnetic field, which excites the nucleus of molecules, causing them to exist in 
superposition. This energy has a specific resonance frequency that is determined by 
the strength of the magnetic field as well as the magnetic characteristics of the atom’s 
isotopes. The detection of certain quantum-mechanical magnetic characteristics of 
the atomic nucleus is possible with NMR. Different components of NMR relaxation 
are as follows. 

1. Magnet: In magnet, superconducting magnets as shim coils, liquid helium, and 
nitrogen containers can be used. 

2. Probe: One important part of the probe is the RF coil. It controls temperature and 
molecules become superpositioned by the impact of this component. Figure 2 
describes the circuit of the probe. There are two types of NMR probes which are 
going to be described in the following subsection. 

3. Console: Electronics for generating RF pulse, power and gradient amplifiers, lock 
system, temperature control with almost all the components of NMR controlled 
by the console. 

4. Computer: When getting all the data from the console, the computer is seen as a 
spectrum. Computers are used for data storage, processing, analysis components, 
and communication between other components. 

14.3.2 Structure of NMR 

The basic schematic setup of NMR is discussed in this section. Figure 14.26 shows 
the schematic figure, which holds superconducting coil generations or magnets. In 
this NMR, the samples are provided into the tube where RF coils exist. RF coil 
works for transmitting a signal into a sample. After collecting the signal from the 
components, the console digitalized the data and the computer visualized this data 
as a spectrum. 

Figure 14.27 is the outfit and inner structure of NMR. In NMR, the probe contains 
the radiofrequency (RF) coils, tuned at specific frequencies for specific nuclei in a 
given magnetic field. 

There are two types of probes for NMR such as Room temperature Probe and 
Cryogenic Probe. The room temperature probe of NMR is shown in Fig. 14.28.



330 14 Data Conversion Mechanisms

Fig. 14.26 Schematic figure of NMR 

Fig. 14.27 Outfit and inner structure of NMR 

Cryogenic probe’s main characteristic is that its working temperature is very 
low. The cryogenic probes have two different coils compared to room temperature 
probes, the inner coil and the outer coil, which is described in Fig. 14.29. Figure 14.28 
describes the room temperature probe of NMR. Same as like room temperature 
probe, the cryogenic probes need EMR in the NMR process. In NMR, it needs 
strong magnetic fields to give more energy to the NMR solvent and push them into 
an excited state that’s why EMR is emitted.



14.3 Data Conversion in DNA-Quantum Circuits 331

Fig. 14.28 Room temperature probe of NMR 

14.3.3 Working Procedure of NMR 

NMR is an analytical chemistry technique that creates a strong magnetic field and 
makes molecules nucleus excited, when the molecules exist in superposition. 

Figure 14.30 describes a molecule that does not have any spin at the beginning of 
the NMR process. When molecules are provided into the NMR Probe as a sample then 
molecules are bound by a magnetic field. Molecules’ nuclear spin started spinning 
but they exist in the ground state still because the magnetic field doesn’t create a 
strong magnetic field. 

Fig. 14.29 Circuit of a 
Inner RF coil b Outer RF 
coil in cryogenic probe



332 14 Data Conversion Mechanisms

Fig. 14.30 Spins states realization of a qubit 

To activate the probe and to make the magnetic field stronger it is needed to emit 
Electron Magnetic Resonance, EMR. After selecting the molecule to pass through 
the NMR process, it needs to use this molecule as a sample in NMR to produce a 
qubit. An NMR probe is a part of an NMR spectrometer, which works in terms of 
exciting the nuclear spins and detecting the NMR signal. The probe goes into the 
center of the magnetic field, and the sample is inserted into the probe to perform the 
NMR experiment. The probe contains the radiofrequency (RF) coils, tuned at specific 
frequencies for specific nuclei in a given magnetic field. The probe also contains the 
necessary hardware to control the sample temperature. From the probe, molecules 
make themselves in superposition. 

For going from the ground state to the excited state molecules needs more energy. 
Measurement of energy works from the formula, 

E .= hv 

By emitting the Electron Magnetic Resonance (EMR), the magnetic field becomes 
strong and molecules become excited and jump into excited and superposition states. 
By using NMR only two states of the molecule can go to the superposition state. So, 
it can be said that only molecules can have the superposition state which molecules 
I .= . 

1
2 . 

It is known that, 
Nucleus .= proton .+ electron 

So, if protons and neutrons both numbers are odd then I . = 1 and if both numbers are 
even then I .= 0 but if one is odd and one is even then I .= 1/2, 3/2, 5/2. But I .= . 

1
2

can be only NMR solvent. 
Because, the formula, m .= 2l .+ 1, defines the state of a molecule. Where, m is the 
magnetic quantum number. 
So, for l .= 1 
.= 2.1 .+ 1 
.= 3



14.3 Data Conversion in DNA-Quantum Circuits 333

So, if I .= 1 then there will be three states. 
If, I .= 0 
.= 2.0 .+ 1 
.= 1 
So, if I .= 0 then there will be only 1 state. 
But when I .= . 

1
2 , the states are plus . 

1
2 and minus . 12 . That’s why when I .= . 

1
2 , the  

superposition can occur in the molecule. As a result, the DNA sequence molecules 
can be used because in DNA molecules, the hydrogen is found. 

14.3.4 DNA Sequence to Qubits Using NMR 

DNA computing is an emerging field for the researcher and it contains biology and 
molecular biology. Researchers right now find another interesting and useful topic 
for the future called quantum biology. Quantum biology is mainly a study between 
quantum computing and DNA computing. 

DNA has the characteristics of enabling classical logical operation using DNA 
sequence. DNA prefers to be in double-stranded form, while single-stranded DNA 
naturally migrates towards complementary sequences to form double-stranded com-
plexes. Complementary sequences pair the bases adenine (A) with thymine (T) and 
cytosine (C) with guanine (G). DNA sequences pair in an antiparallel manner, with 
the 5’ end of one sequence pairing with the 3’ end of the complementary sequence. 

DNA is used for performing different operations such as NOT, AND, OR, NAND, 
XOR, NOR, and XNOR, which are called DNA operations. Each DNA operation 
input will be the single standard sequence, if it is assumed true then the comple-
mentary DNA sequence will be false. Suppose ACTCGT is the input sequence then 
the complementary sequence TGAGCA. In DNA computing, while designing the 
DNA logic gate, a predetermined single strand sequence can be supplied to induce 
an appropriate chemical reaction. This sequence also helps to evaluate output value 
whether it is true or false. 

Fluorescent labels can be used to detect the presence or absence of the double-
stranded sequence. The presence of a fluorescently labeled double-stranded sequence 
will only work if the single-stranded labeled sequences are removed. This can be 
accomplished using deoxyribonuclease (DNase) enzymes. 

14.3.4.1 DNA Operations 

DNA-based computing can do billions of operations simultaneously which is more 
than digital computer’s capability. In addition, DNA computing can provide huge 
memory in small spaces. The base of DNA computing is the DNA operations. In this 
section, different types of DNA operations will be described. 

1. DNA Circuit for NOT Operation



334 14 Data Conversion Mechanisms

Fig. 14.31 DNA-based 
implementation of the NOT 
operation 

Table 14.14 Inputs and 
outputs of DNA NOT 
operation 

A0 Q 

TGGATC ACCTAG 

ACCTAG TGGATC 

DNA-Based Implementation of the NOT operation is shown in Fig. 14.31. Only  
one input is supplied, and the output is the corresponding complementary 
sequence. Firstly, need to choose the base mixture carefully. If the base mixture 
contains the sequence TGGATC it will work as a buffer. If the base mixture would 
have the sequence ACCTAG it will work as NOT operation. Table 14.14 shows 
the inputs and outputs of DNA NOT operation. It is seen previously where the 
sequence ACCTAG represents a “true” input and the sequence TGGATC rep-
resents a “false” input. The NOT gate, often referred to as an inverter, is one 
of the simplest DNA-based operations. If the input sequence is “false,” then 
TGGATC will bind with the provided ACCTAG sequence to form a double-
stranded sequence. The DNase doesn’t affect the sequences, and the double-
stranded sequence will be observed, which gives a “true” evaluation. Conversely, 
if the input sequence is “true”, then ACCTAG will not bind with the provided 
ACCTAG sequence. The DNase will destroy both sequences, and no double-
stranded sequences will be observed, which gives a “false” evaluation. 

2. DNA Circuit for OR Operation 
First, it needs to choose the base mixture carefully. Then check each combination 
of input with the base mixture to match the DNA OR output. If the base mixture 
would have the sequence ACCTAG it would work as a DNA NAND operation. If



14.3 Data Conversion in DNA-Quantum Circuits 335

Fig. 14.32 DNA-based 
implementation of the OR 
operation 

the base mixture contains the sequence TGGATC, for each combination of input 
sequences it works as DNA OR Operation. The DNA-based implementation of 
the OR operation is shown in Fig. 14.32 and Table 14.15 shows the inputs and 
outputs of DNA OR operation. 
Consider the example above where the sequence ACCTAG represents a “true” 
input and the sequence TGGATC represents a “false” input. The OR gate eval-
uates “true” if one or both of the gate inputs are “true.” If a double-stranded 
sequence is observed, then the result is “true”; otherwise, the result is “false.” If 
both of the input sequences are “true” ACCTAG sequences, then one sequence 
will combine with the supplied “false” TGGATC sequence to produce a dou-
ble stranded sequence. The DNase will destroy the remaining input sequences 
and the double stranded sequence will generate a “true” evaluation. If one input 
sequence is “false” and the other is “true,” then the “true” ACCTAG sequence 
will combine with either of the “false” TGGATC sequences to produce a dou-
ble stranded sequence. The DNase will destroy the remaining “false” sequences 
and the gate will result a “true” evaluation. If both input sequences are “false” 
TGGATC sequences, then none of the sequences will combine with the supplied 
“false” sequence. The DNase will destroy all sequences in the mixture, and it 
gives a “false” evaluation of the gate. 

3. DNA Circuit for NOR Operation 
NOR gate is the combination of OR and NOT gate. The output of the OR gate will 
go through the NOT gate to generate NOR gate output. At first, it needs to choose 
an OR gate (Fig. 14.32) and then choose a NOT gate (Fig. 14.31). Finally, it is 
necessary to check each combination of input with the base mixture of OR gate 
and the output of the OR gate check with the base mixture of NOT gate to match 
the NOR gate output. The DNA-based implementation of the NOR operation is



336 14 Data Conversion Mechanisms

Table 14.15 Inputs and 
outputs of DNA OR operation 

A0 A1 Q 

TGGATC TGGATC TGGATC 

TGGATC ACCTAG ACCTAG 

ACCTAG TGGATC ACCTAG 

ACCTAG ACCTAG ACCTAG 

Fig. 14.33 DNA-based implementation of the NOR operation 

Table 14.16 Inputs and 
outputs of DNA NOR 
operation 

A0 A1 Q 

TGGATC TGGATC ACCTAG 

TGGATC ACCTAG TGGATC 

ACCTAG TGGATC TGGATC 

ACCTAG ACCTAG TGGATC 

shown in Fig. 14.33 and Table 14.16 shows the inputs and outputs of DNA NOR 
operation. 
The NOR gate, which evaluates “true” only when both inputs are “false”, which is 
created by applying the NOT gate to the output of the OR gates. Continuing with 
the example above, if both of the input sequences are “false” TGGATC sequences, 
then one will combine with the supplied “false” TGGATC sequence in OR gate 
to produce a double-stranded molecule. The DNase will destroy the remain-
ing input sequences and the double-stranded sequence will generate a “false” 
TGGATC sequence. This “false” sequence will go through NOT gate and result 
in a “true” evaluation. If one input sequence is “false” and the other is “true”, then 
the “false” TGGATC input sequence will combine with either of the “true” ACC-
TAG sequences in OR gate to produce the necessary double-stranded sequence.



14.3 Data Conversion in DNA-Quantum Circuits 337

Fig. 14.34 DNA-based 
implementation of the 
NAND gate 

Table 14.17 Inputs and 
outputs of DNA NAND 
operation 

A0 A1 Q 

TGGATC TGGATC ACCTAG 

TGGATC ACCTAG ACCTAG 

ACCTAG TGGATC ACCTAG 

ACCTAG ACCTAG TGGATC 

DNAse will then destroy the remaining “false” sequences and the double-stranded 
sequence will generate a “true” ACCTAG sequence. This “true” sequence will 
go through NOT gate and it generates a “false” evaluation. Finally, if both input 
sequences are “true” ACCTAG sequences, then neither will combine with the 
supplied “false” sequence in OR gate. DNase will destroy all sequences in the 
mixture, where the result is in a “true” sequence. This “true” sequence will go 
through NOT gate and it generates a “false” evaluation. 

4. DNA Circuit for NAND Operation 
Firstly, it needs to choose the base mixture carefully. Then check each combination 
of input base mixture to match the NAND gate output. If the base mixture contains 
the sequence TGGATC, then it will work as OR gate. If the base mixture would 
have the sequence ACCTAG, for each combination of input sequences it works 
as a NAND gate operation. The DNA-based implementation of the NAND gate 
operation is shown in Fig. 14.34, and Table 14.17 shows the inputs and outputs 
of DNA NAND operation. 
The NAND gate evaluates “true” if inputs are not both “true.” Thus, introducing 
the “true” sequence in the base mixture will require at least one of the inputs 
be “false” to form a double-stranded sequence. The DNase will destroy any 
single-stranded sequence in the mixture. Continuing with the example above, if



338 14 Data Conversion Mechanisms

Fig. 14.35 DNA-based AND operation 

both of the input sequences are “false” TGGATC sequences, then one will com-
bine with the supplied “true” ACCTAG sequence to produce a double-stranded 
molecule. The DNase will destroy the remaining input sequences and the double-
stranded sequence will result in a “true” evaluation. If one input sequence is 
“false” and the other is “true”, then the “false” TGGATC input sequence will 
combine with either of the “true” ACCTAG sequences to produce the necessary 
double-stranded sequence. The DNase will then destroy the remaining “false” 
sequence and the gate will result in a “true” evaluation. Finally, if both input 
sequences are “true” ACCTAG sequences, where no one will combine with the 
supplied “true” sequence. The DNase will destroy all sequences in the mixture, 
and result in a “false” evaluation. 

5. DNA Circuit for AND Operation 
AND gate is the combination of NAND and NOT gates. The output of the NAND 
gate will go through the NOT gate to generate AND gate output. At first, it needs 
to choose a NAND gate (Fig. 14.34) and then choose a NOT gate (Fig. 14.31). 
Finally, check each combination of input with the base mixture of NAND gate and 
the output of the NAND gate check with the base mixture of NOT gate to match 
the AND gate output. The DNA-based implementation of the AND operation is 
shown in Fig. 14.35, and Table 14.18 shows the inputs and outputs of DNA AND 
operation. 
The AND gate, which evaluates “true” only when both inputs are “true”, and it 
is created by applying the NOT gate to the output of the NAND gate. Continuing 
with the example above, if both of the input sequences are “false” TGGATC 
sequences, then one will combine with the supplied “true” ACCTAG sequence 
in NAND gate to produce a double stranded molecule. The DNase will destroy



14.3 Data Conversion in DNA-Quantum Circuits 339

Table 14.18 Inputs and 
outputs of DNA AND 
operation 

A0 A1 Q 

TGGATC TGGATC TGGATC 

TGGATC ACCTAG TGGATC 

ACCTAG TGGATC TGGATC 

ACCTAG ACCTAG ACCTAG 

the remaining input sequence, and the double stranded sequence will generate 
a “true” ACCTAG sequence. This “true” sequence will go through NOT gate 
and result in a “false” evaluation. If one input sequence is “false” and the other 
is “true”, then the “false” TGGATC input sequence will combine with either of 
the “true” ACCTAG sequences in NAND gate to produce the necessary double-
stranded sequence. The DNase will then destroy the remaining “false” sequences 
and the double-stranded sequence will generate a “true” ACCTAG sequence. 
This “true” sequence will go through NOT gate and result in a “false” evaluation. 
Finally, if both input sequences are “true” ACCTAG sequences, then no sequence 
will combine with the supplied “true” sequence in NAND gate. The DNase will 
destroy all sequences in the mixture, which results in a “false” sequence. This 
“false” sequence will go through NOT gate and result in a “true” evaluation. 

6. DNA Circuit for XOR Operation 
For XOR gate design, there is no need for any base mixture as none of the 
sequences produce the XOR output. Actually, it needs to check the input sequence. 
For sequences to have opposite values, they are complementary and will bind 
together to form a double-stranded sequence. For each combination of input 
sequences, the output will be matched. The DNA-based implementation of the 

Fig. 14.36 DNA-based 
implementation of the XOR 
operation



340 14 Data Conversion Mechanisms

Table 14.19 Inputs and 
outputs of DNA XOR 
operation 

A0 A1 Q 

TGGATC TGGATC TGGATC 

TGGATC ACCTAG ACCTAG 

ACCTAG TGGATC ACCTAG 

ACCTAG ACCTAG TGGATC 

XOR gate operation is shown in Fig. 14.36, and Table 14.19 shows the inputs and 
outputs of DNA XOR operation. 
The XOR gate evaluates “true” only if exactly one of the input sequences evaluates 
“true.” In DNA-based gates, the XOR gate is the most simplistic design in that 
no external sequences need to be supplied to the gate. For the sequences to have 
opposite values TGGATC and ACCTAG, they are complementary, and they will 
bind together to form a double-stranded sequence and the output is “true”. If the 
inputs are not complementary (TGGATC, TGGATC or ACCTAG, ACCTAG), 
sequences will not bind to one another and the DNase will destroy both input 
sequences when the output is “false”. 

7. DNA Circuit for XNOR Operation 
XNOR gate is the combination of XOR and NOT gates. The output of the XOR 
gate will go through the NOT gate to generate XNOR gate output. Firstly, it 
needs to choose a XOR gate and then choose a NOT gate. Finally, check the 
input sequence of XOR. For the sequences to have opposite values, they are 
complementary which will bind together to form a double-stranded sequence. 
Finally, the output of the XOR gate checks with the base mixture of NOT gate 
to match the XNOR gate output. The DNA-based implementation of the XNOR 
gate operation is shown in Fig. 14.37, Table 14.20 shows the inputs and outputs 
of DNA XNOR operation. 
The XNOR gate, which evaluates “false” only when any inputs are “false”, which 
is created by applying the NOT gate to the output of the XOR gate. The XOR 
gate evaluates “true” only if exactly one of the input sequences evaluates “true.” 
In DNA-based logic gates, the XOR gate is the most simplistic design where no 
external sequences need to be supplied to the gate. For sequences to have opposite 
values TGGATC and ACCTAG, they are complementary, which will bind together 
to form a double-stranded sequence and the output is “true”. This “true” sequence 
will go through DNA NOT gate and result in a “false” evaluation. If the inputs are 
not complementary (TGGATC, TGGATC or ACCTAG, ACCTAG), the sequences 
will not bind to one another and the DNase will destroy both input sequences and 
the output is “false”. This “false” sequence will go through DNA NOT gate and 
result a “true” evaluation.



14.3 Data Conversion in DNA-Quantum Circuits 341

Fig. 14.37 DNA-based implementation of the XNOR operation 

Table 14.20 Inputs and 
outputs of DNA XNOR 
operation 

A0 A1 Q 

TGGATC TGGATC ACCTAG 

TGGATC ACCTAG TGGATC 

ACCTAG TGGATC TGGATC 

ACCTAG ACCTAG ACCTAG 

14.3.4.2 DNA-Quantum Operations Using NMR at Room Temperature 

DNA-Quantum computing merges all the advantages of individual DNA computing 
and Quantum computing. The DNA-based computing is mostly chosen for its simul-
taneous operation capability. On the other hand, quantum computing is an emergent 
process of speedy computing which is more capable than a digital computer. In 
addition, Quantum computing can perform calculations in a few seconds for which 
today’s supercomputer would take ages or decades. DNA computing can provide 
huge memory in small spaces. So, the large memory space and fast computation 
can be possible by using the DNA-Quantum computing process. The base of DNA-
Quantum computing is nothing, but it is DNA and Quantum operational gates. In 
this section, different types of DNA-quantum operational gates will be described. 

1. DNA-Quantum NOT Operation 
The DNA NOT operation is prepared to produce the output as a complementary 
sequence of input. To produce the output, it needs a single input that contains single 
strands of DNA sequence. Also it needs a base sequence and anneal temperature 
for the DNA operation. After getting the output DNA sequence from DNA NOT 
operation, it needs to go through the NMR process. In NMR, a room temperature 
probe has been used. By performing the NMR operation on the DNA sequence,



342 14 Data Conversion Mechanisms

Table 14.21 Inputs and outputs of DNA-quantum NOT operation 

Input Output Quantum qubit, |X. >

TGGATC ACCTAG |1. >

ACCTAG TGGATC |0. >

the qubit of normal ground state turns into a superposition state or ground state 
according to the input sequence in NMR. The output of the NMR process will be 
qubit. 
The DNA-Quantum NOT operation is the inverter operation, which is one of 
the simplest DNA-Quantum operations. If the input DNA sequence is “false”, 
the TGGATC will bind with the provided ACCTAG sequence to form a double-
stranded sequence. The DNase will not affect the sequences, and the double-
stranded sequence will be observed, representing a “true” evaluation. Conversely, 
if the input sequence is “true”, then ACCTAG will not bind with the provided 
ACCTAG sequence, where the DNase will destroy both sequences, and no double-
stranded sequences will be observed, representing a “false” evaluation. 
When getting the DNA sequence from DNA NOT operation, this sequence will 
go through NMR as a sample and dive into the probe. Using the NMR process at 
room temperature and by emitting EMR, this biomolecule will get a superposition 
state and produce a qubit. 
Here, the DNA sequence ACCTAG. =TRUE for qubit |1. > and the DNA sequence 
TGGATC .= FALSE for qubit |0 . >. The outputs for different combinations of 
inputs are given in Table 14.21. 
Figure 14.38 shows the process of converting DNA sequences to qubits of DNA-
Quantum NOT operation. 

2. DNA-Quantum OR Operation 
To produce the output, it needs two inputs which has single strands of DNA 
sequence. Also, it needs a base sequence and anneal temperature for the DNA 
operation. To produce the expected output for OR operation the base mixture 
should be chosen carefully. Then, it is better to check each combination of input 
with base mixture to match the DNA OR gate output. If the base mixture would 
have the sequence ACCTAG then it works as a DNA NAND gate. If the base 
mixture has the sequence TGGATC, then for each combination of input sequences 
it works as OR gate operation. 
After getting the output DNA sequence from DNA OR operation, it needs to 
go through the NMR process. In NMR, a room temperature probe is used. By 
doing NMR for the DNA sequence, the qubit of normal ground state turns into 
superposition state or ground state according to the input sequence in NMR. The 
output of the NMR process is a qubit. Figure 14.39 shows the process of converting 
DNA sequences to qubits of DNA-Quantum OR operation. 
The DNA-quantum OR operation is the most important DNA-quantum opera-
tion. Let us assume two sequences ACCTAG to represents a “true” input and the



14.3 Data Conversion in DNA-Quantum Circuits 343

Fig. 14.38 DNA-quantum NOT operation 

Fig. 14.39 DNA-quantum OR operation 

sequence TGGATC represents a “false” input. The gate evaluates “true” if one or 
both of the gate inputs are “true.” If a double-stranded sequence is observed, then 
the result is “true”; otherwise, the result is “false.” If both of the input sequences 
are “true” ACCTAG sequences, then one sequence will combine with the supplied 
“false” TGGATC sequence to produce a double-stranded sequence. The DNase



344 14 Data Conversion Mechanisms

Table 14.22 Inputs and outputs of DNA-quantum OR operation 

Input.1 Input.2 Output Quantum qubit, |X. >

TGGATC TGGATC TGGATC |0. >

TGGATC ACCTAG ACCTAG |1. >

ACCTAG TGGATC ACCTAG |1. >

ACCTAG ACCTAG ACCTAG |1. >

will destroy the remaining input sequences and the double-stranded sequence 
will result in a “true” evaluation. If one input sequence is “false” and the other is 
“true,” then the “true” ACCTAG sequence will combine with either of the “false” 
TGGATC sequences to produce a double-stranded sequence. The DNase will 
destroy the remaining “false” sequences and the gate will generate a “true” eval-
uation. If both input sequences are “false” TGGATC sequences, then combined 
with the supplied “false” sequence. The DNase will destroy all sequences in the 
mixture, and it produces a “false” evaluation of the gate. 
When getting the DNA sequence from DNA OR operation, this sequence will go 
through NMR as a sample and dive into the probe. Using the NMR process at 
room temperature and by emitting EMR, this biomolecule will get a superposition 
state and produce a qubit. 
Here, DNA sequence ACCTAG .= TRUE for qubit |1 .> and DNA sequence 
TGGATC .= FALSE for qubit |0 . >. The outputs for different combinations of 
input are given in Table 14.22. 

3. DNA-Quantum XOR Operation 
To produce output, it needs two inputs which has single strands of DNA sequence 
and no need for a base sequence. But it needs anneal temperature for the DNA 
XOR operation. It is required to check the input sequence. For sequences to 
have opposite values, they are complementary which will bind together to form a 
double-stranded sequence. For each combination of input sequences, the output 
needs to be checked. 
After getting the output DNA sequence from DNA XOR operation, it is needed to 
provide it through the NMR process. In NMR, a room temperature probe is used. 
By performing NMR for the DNA sequence, the qubit of normal ground state 
turns into superposition state or ground state according to the input sequence in 
NMR. The output of the NMR operation is a qubit. Figure 14.40 shows the process 
of converting DNA sequences to qubits of DNA-Quantum XOR operation. 
The DNA-Quantum XOR operation is another most important DNA-Quantum 
operation. Consider two sequences, where ACCTAG represents a “true” input and 
the sequences TGGATC represents a “false” input. The XOR gate evaluates “true” 
if both sequence of the gate inputs are complementary to each other. They make a 
double stranded DNA sequence. If a double stranded sequence is observed, then 
the result is “true”; otherwise, the result is “false.” If both of the input sequences are 
different to each other ACCTAG and TGGATC sequences, then these sequences



14.3 Data Conversion in DNA-Quantum Circuits 345

Fig. 14.40 DNA-quantum XOR operation 

will combine and produce a double-stranded sequence. The DNase will destroy 
the remaining input sequence and the double-stranded sequence will result in a 
“true” evaluation. If both input sequences are “false” or “true,” then the sequence 
will not combine with each other. The DNase will destroy all sequences in the 
mixture, and it gives a “false” evaluation of the operation. 
When getting the DNA sequence from DNA XOR operation, this sequence will 
go through NMR as a sample and dive into the probe. Using the NMR process at 
room temperature and by emitting EMR, this biomolecule will get a superposition 
state and become a qubit. 
Here, DNA sequence ACCTAG .= TRUE for qubit |1 .> and DNA sequence 
TGGATC .= FALSE for qubit |0 . >. The outputs for different combinations of 
input are given in Table 14.23. 

4. DNA-Quantum AND Operation 
To produce the output, it needs two inputs which consist of single strands of DNA 
sequence. Also it needs a base sequence and anneal temperature for the DNA 
operation. To produce the expected output for AND operation, it is needed to 
choose the base mixture carefully. Then it is better to check each combination of 
input with the base mixture to match the AND gate output. If the base mixture 
has the sequence TGGATC it will work as DNA NOR gate. If the base mixture 
would have the sequence ACCTAG, for each combination of inputs sequences it 
works as DNA AND operation. 
After getting the output DNA sequence from DNA AND operation, there is a 
need to provide it through the NMR process. In NMR, a room temperature probe 
is used. By doing NMR for the DNA sequence, the qubit of normal ground state



346 14 Data Conversion Mechanisms

Table 14.23 Inputs and outputs of DNA-quantum XOR operation 

Input.1 Input.2 Output Quantum qubit, |Q. >

TGGATC TGGATC TGGATC |0. >

TGGATC ACCTAG ACCTAG |1. >

ACCTAG TGGATC ACCTAG |1. >

ACCTAG ACCTAG TGGATC |0. >

Fig. 14.41 DNA-quantum AND operation 

turns into superposition state or ground state according to the input sequence in 
NMR (Fig. 14.41). The output of the NMR process is quantum qubit. 
The DNA-Quantum AND operation is the most important logic operation in DNA-
Quantum Computing. Consider the two sequences, where ACCTAG represents 
a “true” input and the sequence TGGATC represents a “false” input. The AND 
gate evaluates “true” if both of the gate inputs are “true.” If one of the sequences 
is “false” then the output will be “false”. The DNase will destroy the remaining 
input sequence and the double-stranded sequence will result a “true” evaluation. 
If one input sequence is “false” and the other is “true,” then the “true” ACCTAG 
sequence will combine with either of the “false” TGGATC sequences to pro-
duce a double-stranded sequence. The DNase will destroy the remaining “false” 
sequences and the gate will result a “true” evaluation. If both input sequences are 
“false” TGGATC sequences, then neither will combine with the supplied “false” 
sequence. The DNase will destroy all sequences in the mixture, which results a 
“false” evaluation of the gate. 
When getting the DNA sequence from DNA AND operation, this sequence will 
go through NMR as a sample and dive into the probe. Using the NMR process at



14.3 Data Conversion in DNA-Quantum Circuits 347

Table 14.24 Input and output of DNA-quantum AND operation 

Input.1 Input.2 Output Quantum qubit, |A. >

TGGATC TGGATC TGGATC |0. >

TGGATC ACCTAG TGGATC |0. >

ACCTAG TGGATC TGGATC |0. >

ACCTAG ACCTAG ACCTAG |1. >

room temperature and by emitting EMR, this biomolecule will get a superposition 
state and become a qubit. 
Here, DNA sequence ACCTAG .= TRUE for qubit |1 .> and DNA sequence 
TGGATC .= FALSE for qubit |0 . >. The outputs for different combinations of 
inputs are given in Table 14.24. 

5. DNA-Quantum Full Adder at Room Temperature 
A full adder is an arithmetic circuit which adds three inputs and produces two 
outputs. The first two inputs are A and B and the third input is an input carry as 
C. in . The output carry is designated as C.out and the normal output is designated 
as S which is Sum. A Full Adder logic is designed in such a manner that can 
take eight inputs together to create a qubit adder and cascade the carry qubit from 
one adder to another. To create a Full Adder, one OR, two AND and two XOR 
operations are required. Figure 14.42 describes the DNA-Quantum circuit of the 
Full Adder. 
To design a DNA-Quantum Full Adder, DNA and Quantum operations are used 
to operate the input DNA sequence for their corresponding output qubits. The 
DNA operations will be used for receiving the input sequence and the Quantum 
operations will be used to produce the final output against the corresponding 
set of inputs. Each time, the DNA-Quantum Full adder will receive three DNA 
sequences as input. After performing a certain number of DNA operations, the 
qubit will be turned into corresponding qubits by using NMR at room temperature 
probe. By using a room temperature probe and corresponding components of the 
NMR process, the stable or grounded state qubits get excited by using EMR to 
provide an output as a qubit. Then, the qubits are processed through quantum 
operations; and outputs are generated. 
Here, Fig. 14.42 describes DNA-Quantum Full adder using DNA and Quantum 
operations. 
From the Fig. 14.42, it is obvious that the DNA- Quantum Full Adder consists 
of three DNA operations and two Quantum operations. Here, two AND and one 
XOR are used as DNA operations and further one XOR and one OR Quantum 
operations are used. 
The working procedure of the DNA-Quantum Full adder is given below for each 
pattern of the input DNA sequence. Here, DNA sequence ACCTAG. = TRUE for 
qubit |1 .> and DNA sequence TGGATC.= FALSE for qubit |0 . >.



348 14 Data Conversion Mechanisms

Fig. 14.42 DNA-quantum full adder at room temperature 

Table 14.25 Outputs of DNA-quantum full adder operation 

A B C.in SUM Carry 

TGGATC TGGATC TGGATC |0.> |0. >

TGGATC TGGATC ACCTAG |1.> |0. >

TGGATC ACCTAG TGGATC |1.> |0. >

TGGATC ACCTAG ACCTAG |0.> |1. >

ACCTAG TGGATC TGGATC |1.> |0. >

ACCTAG TGGATC ACCTAG |0.> |1. >

ACCTAG ACCTAG TGGATC |0.> |1. >

ACCTAG ACCTAG ACCTAG |1.> |1.>



14.3 Data Conversion in DNA-Quantum Circuits 349

The working procedure of the DNA-quantum Full Adder is given below for 4 
out of 8 patterns of input DNA sequences. In addition, all inputs and outputs 
combinations are tabulated in Table 14.25. 

(a) For inputs A, B, C.in .= TGGATC, Sum .= Quantum XOR (DNA XOR (A, 
B), C) 
.= Quantum XOR (DNA XOR (TGGATC, TGGATC), TGGATC) 
.= Quantum XOR (TGGATC, TGGATC) 
.= Quantum XOR (0, 0) [Using NMR] 
.= 0 
Carry .= Quantum OR (DNA AND (C, XOR (A, B)), DNA AND (A,B)) 
. =Quantum OR (DNA AND (TGGATC, XOR (TGGATC, TGGATC)), DNA 
AND (TGGATC, TGGATC)) 
. =Quantum OR (DNA AND (TGGATC, XOR (TGGATC, TGGATC)), DNA 
AND (TGGATC, TGGATC)) 
.= Quantum OR (TGGATC, TGGATC) 
.= Quantum OR (0, 0) [Using NMR] 
.= 0 

(b) For inputs A, B, C.in .= TGGATC, TGGATC, ACCTAG Sum .= Quantum 
XOR (DNA XOR (A, B), C) 
.= Quantum XOR (DNA XOR (TGGATC, TGGATC), ACCTAG) 
.= Quantum XOR (TGGATC, ACCTAG) 
.= Quantum XOR (0, 1) [Using NMR] 
.= 1 
Carry .= Quantum OR (DNA AND (C, XOR (A, B)), DNA AND (A, B)) 
. =Quantum OR (DNA AND (ACCTAG, XOR (TGGATC, TGGATC)), DNA 
AND (TGGATC, TGGATC)) 
.= Quantum OR (DNA AND (ACCTAG, TGGATC), TGGATC) 
.= Quantum OR (TGGATC, TGGATC) 
.= Quantum OR (0, 0) [Using NMR] 
.= 0 

(c) For inputs A, B, C.in .= TGGATC, ACCTAG, TGGATC Sum .= Quantum 
XOR (DNA XOR (A, B), C) 
.= Quantum XOR (DNA XOR (TGGATC, ACCTAG), TGGATC) 
.= Quantum XOR (ACCTAG, TGGATC) 
.= Quantum XOR (1, 0) [Using NMR] 
.= 1 
Carry .= Quantum OR (DNA AND (C, XOR (A, B)), DNA AND (A, B)) 
. =Quantum OR (DNA AND (TGGATC, XOR (TGGATC, ACCTAG)), DNA 
AND (TGGATC, ACCTAG)) 
.= Quantum OR (DNA AND (TGGATC, ACCTAG), TGGATC) 
.= Quantum OR (TGGATC, TGGATC) 
.= Quantum OR (0, 0) [Using NMR] 
.= 0 
For inputs A, B, C.in .= TGGATC, ACCTAG, ACCTAG



350 14 Data Conversion Mechanisms

Sum .= Quantum XOR (DNA XOR (A, B), C) 
.= Quantum XOR (DNA XOR (TGGATC, ACCTAG), ACCTAG) 
.= Quantum XOR (ACCTAG, ACCTAG) 
.= Quantum XOR (1, 1) [Using NMR] 
.= 0 
Carry .= Quantum OR (DNA AND (C, XOR (A, B)), DNA AND (A, B)) 
. =Quantum OR (DNA AND (ACCTAG, XOR (TGGATC, ACCTAG)), DNA 
AND (TGGATC, ACCTAG)) 
.= Quantum OR (DNA AND (ACCTAG, ACCTAG), TGGATC) 
.= Quantum OR (ACCTAG, TGGATC) 
.= Quantum OR (1, 0) [Using NMR] 
.= 1 

6. DNA-Quantum Full Subtractor at Room Temperature 
A full subtractor is a combinational circuit that performs subtraction of two qubits, 
one is minuend and the other is subtrahend, taking into account the borrow of the 
previous adjacent lower minuend qubit. This circuit has three inputs and two 
outputs. The three inputs A, B, and B. in , denote the minuend, subtrahend, and 
previous borrow respectively. The two outputs, D and B.out represent the difference 
and output borrows, respectively. To create a full subtractor, one OR, two AND, 
two OR, and two XOR gates are required. 
To design a DNA-Quantum Full Subtractor, DNA and Quantum operations are 
used to operate the input qubit for their corresponding outputs. The DNA opera-
tion will be used for receiving the input DNA sequence and the Quantum oper-
ations will be used to produce the final output against the corresponding set of 
inputs. Each time, the DNA-Quantum Full Subtractor will receive three DNA 
sequences as input. After performing a certain number of DNA operations, the 
DNA sequence will be turned into corresponding qubits by using NMR at a room 
temperature probe. The process of producing a qubit against a DNA sequence is 
explained before. By using a room temperature probe and corresponding compo-
nents of NMR, the ground qubit turns on/off excited state and produces a qubit 
for emitting EMR. Then the qubits are processed through Quantum operation and 
outputs are received. Here, Fig. 14.43 describes DNA-Quantum Full Subtractor 
using DNA and Quantum operation. 
From Fig. 14.43, it is seen that the DNA-Quantum Full Subtractor consists of three 
DNA operations and two Quantum operations. Here, two AND and one XOR are 
used as DNA operation and further one XOR and one OR Quantum operation are 
used. 
The working procedure of the DNA-Quantum Full Subtractor is given below for 
each pattern of input qubits. Here, DNA sequence ACCTAG .= TRUE for qubit 
|1 .> and DNA sequence TGGATC.= FALSE for qubit |0 . >. 
The working procedure of the DNA-Quantum Full Subtractor is given below for 
4 out of 8 patterns of input DNA sequencs. In addition, inputs and outputs of 
different combinations are tabulated in Table 14.26.



14.3 Data Conversion in DNA-Quantum Circuits 351

Fig. 14.43 DNA-quantum full subtractor at room temperature 

Table 14.26 Outputs of DNA-quantum full subtractor operation 

A B B.in D B. out

TGGATC TGGATC TGGATC |0.> |0. >

TGGATC TGGATC ACCTAG |1.> |1. >

TGGATC ACCTAG TGGATC |1.> |1. >

TGGATC ACCTAG ACCTAG |0.> |1. >

ACCTAG TGGATC TGGATC |1.> |0. >

ACCTAG TGGATC ACCTAG |0.> |0. >

ACCTAG ACCTAG TGGATC |0.> |0. >

ACCTAG ACCTAG ACCTAG |1.> |1.>



352 14 Data Conversion Mechanisms

(a) For inputs A, B, B.in .= TGGATC, D .= Quantum XOR (DNA XOR (A, B), 
B. in) 
.= Quantum XOR (DNA XOR (TGGATC, TGGATC), TGGATC) 
.= Quantum XOR (TGGATC, TGGATC) 
.= Quantum XOR (0, 0) [Using NMR] 
.= 0 
B.out.= Quantum OR (DNA AND (B. in , NOT (XOR (A, B))), DNA AND ( 
NOT (A), B)) 
. = Quantum OR (DNA AND (TGGATC, ACCTAG), DNA AND (ACCTAG, 
TGGATC)) 
.= Quantum OR (TGGATC, TGGATC) 
.= Quantum OR (0, 0) [Using NMR] 
.= 0 

(b) For inputs A, B, B.in . = TGGATC, TGGATC, ACCTAG D . = Quantum XOR 
(DNA XOR (A, B), B. in) 
.= Quantum XOR (DNA XOR (TGGATC, TGGATC), ACCTAG) 
.= Quantum XOR (TGGATC, ACCTAG) 
.= Quantum XOR (0, 1) [Using NMR] 
.= 1 
B.out .= Quantum OR (DNA AND (B. in , NOT (XOR (A, B))), DNA AND 
(NOT (A), B)) 
. = Quantum OR (DNA AND (ACCTAG, ACCTAG), DNA AND (ACCTAG, 
TGGATC)) 
.= Quantum OR (ACCTAG, 0) 
.= Quantum OR (1, 0) [Using NMR] 
.= 1 

(c) For inputs A, B, B.in . = TGGATC, ACCTAG, TGGATC D . = Quantum XOR 
(DNA XOR (A, B), B. in) 
.= Quantum XOR (DNA XOR (0, ACCTAG), 0) 
.= Quantum XOR (ACCTAG, 0) 
.= Quantum XOR (1, 0) [Using NMR] 
.= 1 
B.out .= Quantum OR (DNA AND (B. in , NOT (XOR (A, B))), DNA AND 
(NOT (A), B)) 
. = Quantum OR (DNA AND (TGGATC, ACCTAG), DNA AND (ACCTAG, 
ACCTAG)) 
.= Quantum OR (DNA AND (TGGATC, ACCTAG), ACCTAG) 
.= Quantum OR (TGGATC, ACCTAG) 
.= Quantum OR (0, 1) [Using NMR] 
.= 1 

(d) For inputs A, B, B.in . = TGGATC, ACCTAG, ACCTAG D . = Quantum XOR 
(DNA XOR (A, B), B. in) 
.= Quantum XOR (DNA XOR (TGGATC, ACCTAG), ACCTAG) 
.= Quantum XOR (ACCTAG, ACCTAG) 
.= Quantum XOR (1, 1) [Using NMR]



14.3 Data Conversion in DNA-Quantum Circuits 353

.= 0 
B.out .= Quantum OR (DNA AND (B. in , NOT (XOR (A, B))), DNA AND 
(NOT (A), B)) 
. = Quantum OR (DNA AND (ACCTAG, TGGATC), DNA AND (ACCTAG, 
ACCTAG)) 
.= Quantum OR (DNA AND (ACCTAG, TGGATC), ACCTAG) 
.= Quantum OR (TGGATC, ACCTAG) 
.= Quantum OR (1, 0) [Using NMR] 
.= 1 

7. DNA-Quantum 2-to-1 Multiplexer at Room Temperature 
A multiplexer (MUX) is a device that can receive multiple input signals and 
synthesize a single output signal in a recoverable manner for each input signal. It 
is also an integrated system that usually has a certain number of data inputs and a 
single output. To create a Multiplexer, one NOT, two AND, and an OR gates are 
required. Figure 14.44 describes the DNA-Quantum circuit of the Multiplexer. A 
Multiplexer receives three inputs and produces one output having “Y”. 
To design a DNA-Quantum 2-to-1 Multiplexer, it is required to use DNA and 
Quantum operational gates so that it can operate the input DNA sequences for 
their corresponding outputs. The DNA operation will be used for receiving the 
input DNA sequence and the Quantum operation will be used to produce the final 
output against the corresponding set of inputs. Each time, the DNA-Quantum 
Multiplexer will receive three qubits as input. After performing a certain number 
of DNA operations, the sequence will be turned into corresponding qubits by 
using NMR at a room temperature probe. By using a room temperature probe and 
corresponding components of NMR, the ground qubit turns on/off excited state 
and produces a qubit for emitting EMR. Then the qubits are processed through 
Quantum operations and outputs are received. 
From the Fig. 14.44, it is found that the Quantum-DNA 2-to-1 multiplexer consists 
of three DNA operations and one Quantum operation. Here, two AND and one 
NOT are used as DNA operations and further one OR Quantum operation is also 
used. 
The working procedure of the Quantum-DNA 2-to-1 multiplexer is given below 
for each pattern of input DNA sequence. Here, DNA sequence ACCTAG. =TRUE 
for qubit |1 .> and DNA sequence TGGATC.= FALSE for qubit |0 .> are used. 
The working procedure of the DNA-Quantum 2-to-1 multiplexer is given below 
for 4 out of 8 patterns of input DNA sequences. In addition, inputs and outputs 
of different combinations are tabulated in Table 14.27. 

(a) For inputs S, D. 1, D. 0 .= TGGATC, Y .= Quantum OR (DNA AND (D. 1, S),  
AND (NOT (S), D. 0)) 
. =Quantum OR (DNA AND (TGGATC, TGGATC), AND (NOT (TGGATC), 
TGGATC) 
.= Quantum OR (TGGATC, TGGATC) 
.= Quantum OR (0, 0) [Using NMR] 
.= 0



354 14 Data Conversion Mechanisms

Fig. 14.44 DNA-quantum 2-to-1 multiplexer at room temperature 

Here, Fig. 14.44 describes DNA-quantum multiplexer using DNA and quan-
tum operational gates. 

(b) For inputs S, D. 0, D. 1 .= TGGATC, TGGATC, ACCTAG Y .= quantum OR 
(DNA AND (D. 1, S), AND (NOT (S), D. 0)) 
. =Quantum OR (DNA AND (ACCTAG, TGGATC), AND (NOT (TGGATC), 
TGGATC) 
.= Quantum OR (TGGATC, TGGATC) 
.= Quantum OR (0, 0) [Using NMR] 
.= 1 

(c) For inputs S, D. 0, D. 1 .= TGGATC, ACCTAG, TGGATC Y .= Quantum OR 
(DNA AND (D. 1, S), AND (NOT (S), D. 0)) 
. =Quantum OR (DNA AND (TGGATC, TGGATC), AND (NOT (TGGATC), 
ACCTAG)) 
.= Quantum OR (TGGATC, AND (ACCTAG, ACCTAG)



14.3 Data Conversion in DNA-Quantum Circuits 355

Table 14.27 Outputs of a DNA-quantum 2-to-1 multiplexer operation 

S D1 D0 Y 

TGGATC TGGATC TGGATC |0. >

TGGATC TGGATC ACCTAG |0. >

TGGATC ACCTAG TGGATC |1. >

TGGATC ACCTAG ACCTAG |1. >

ACCTAG TGGATC TGGATC |0. >

ACCTAG TGGATC ACCTAG |1. >

ACCTAG ACCTAG TGGATC |0. >

ACCTAG ACCTAG ACCTAG |1. >

.= Quantum OR (TGGATC, ACCTAG) 

.= Quantum OR (0, 1) [Using NMR] 

.= 1 
(d) For inputs S, D. 0, D. 1 .= TGGATC, ACCTAG, ACCTAG Y .= Quantum OR 

(DNA AND (D. 1, S), AND (NOT (S), D. 0)) 
. =Quantum OR (DNA AND (ACCTAG, TGGATC), AND (NOT (TGGATC), 
ACCTAG)) 
.= Quantum OR (TGGATC, AND (ACCTAG, ACCTAG)) 
.= Quantum OR (TGGATC, ACCTAG) 
.= Quantum XOR (0, 1) [Using NMR] 
.= 1 

8. DNA-Quantum Multiplier at Room Temperature 
A quantum multiplier is a combinational logic circuit or quantum device used 
for multiplying two quantum numbers. The two numbers are more specifically 
known as multiplicand and multiplier and the result is known as a product. The 
multiplicand and multiplier can be of various qubit sizes. The product’s qubit size 
depends on the qubit size of the multiplicand and multiplier. The qubit size of 
the product is equal to the sum of the qubit size of the multiplier multiplicand. 
To create a DNA-Quantum Multiplier circuit, four DNA AND operations, two 
XOR, and two AND Quantum operations are required. Figure 14.45 describes the 
DNA-Quantum circuit of the 2-bit multiplication. 
To design a DNA-Quantum multiplier, Quantum and DNA operational gates are 
used to operate the input DNA sequence for their corresponding outputs. The DNA 
operation will be used for receiving the input DNA sequence and the Quantum 
operational gates will be used to produce the final output against the corresponding 
set of inputs. Each time, the DNA-Quantum multiplier will receive four qubits as 
input. After performing a certain number of DNA operations, the DNA sequence 
will be turned into corresponding qubits by NMR at room temperature probe. 
By using a room temperature probe and corresponding components of the NMR 
process, the DNA sequence will be used to produce a state of the quantum qubit. 
Then the quantum qubit is processed through Quantum operations and outputs are



356 14 Data Conversion Mechanisms

Fig. 14.45 DNA-Quantum multiplier operational circuit 

received. Here, Fig. 14.45 describes DNA-Quantum Multiplier using DNA and 
Quantum operations. 
From the DNA-Quantum circuit in Fig. 14.45, it is found that four (4) AND DNA 
circuits perform with DNA sequences. and it can be used as an input in all Quantum 
circuits. In Quantum circuit it uses two Quantum AND and two Quantum XOR 
operations. 
The working procedure of the DNA-Quantum Multiplier is given below for each 
pattern of input DNA sequences. Here, DNA sequence ACCTAG .= TRUE for 
qubit I1> and DNA sequence TGGATC.= FALSE for qubit |0 . >. 
The working procedure of the DNA-Quantum Multiplier is given below for 4 
patterns of input DNA sequences and the outputs for different combinations of 
inputs are given in Table 14.28. 

(a) For inputs A. 0, A. 1, B. 0, B. 1 .= TGGATC, C. 0 .= Quantum (DNA AND (A. 0, 
B. 0)) 
.= Quantum (DNA AND (TGGATC, TGGATC)) 
.= Quantum (TGGATC)



14.3 Data Conversion in DNA-Quantum Circuits 357

Table 14.28 Outputs of DNA-quantum multiplier operation 

A.0 A.1 B.0 B.1 |C.3 > |C.2 > |C. 1 .> |C. 0 . >

TGGATC TGGATC TGGATC TGGATC |0.> |0.> |0.> |0. >

TGGATC TGGATC TGGATC ACCTAG |0.> |0.> |0.> |0. >

TGGATC TGGATC ACCTAG TGGATC |0.> |0.> |0.> |0. >

TGGATC TGGATC ACCTAG ACCTAG |0.> |0.> |0.> |0. >

TGGATC ACCTAG TGGATC TGGATC |0.> |0.> |0.> |0. >

TGGATC ACCTAG TGGATC ACCTAG |0.> |0.> |0.> |1. >

TGGATC ACCTAG ACCTAG TGGATC |0.> |0.> |1.> |0. >

TGGATC ACCTAG ACCTAG ACCTAG |0.> |0.> |1.> |1. >

ACCTAG TGGATC TGGATC TGGATC |0.> |0.> |0.> |0. >

ACCTAG TGGATC TGGATC ACCTAG |0.> |0.> |1.> |0. >

ACCTAG TGGATC ACCTAG TGGATC |0.> |1.> |0.> |0. >

ACCTAG TGGATC ACCTAG ACCTAG |0.> |1.> |1.> |0. >

ACCTAG ACCTAG TGGATC TGGATC |0.> |0.> |0.> |0. >

ACCTAG ACCTAG TGGATC ACCTAG |0.> |0.> |1.> |1. >

ACCTAG ACCTAG ACCTAG TGGATC |0.> |1.> |1.> |0. >

ACCTAG ACCTAG ACCTAG ACCTAG |1.> |0.> |0.> |1. >

.= 0 [Using NMR]  
C. 2 .= Quantum XOR (DNA AND (A. 0, B. 1), DNA AND (A. 1, B. 0)) 

. =Quantum XOR (DNA AND (TGGATC, TGGATC), DNA AND (TGGATC, 
TGGATC)) 
.= Quantum XOR (TGGATC, TGGATC) 
.= Quantum XOR (0, 0) [Using NMR] 
.= 0 
C. 2 . =Quantum XOR (Quantum AND (DNA AND (A. 0, B. 1), DNA AND (A. 1, 
B. 0)), DNA AND (A. 1, B. 1)) 
. =Quantum XOR (Quantum AND (DNA AND (TGGATC, TGGATC), DNA 
AND (TGGATC, TGGATC)), DNA AND (TGGATC, TGGATC) ) 
.= Quantum XOR (Quantum AND (TGGATC, TGGATC), TGGATC) 
.= Quantum XOR (Quantum AND (0, 0), 0) [Using NMR] 
.= Quantum XOR (0, 0) 
.= 0 
C. 3 . =Quantum AND (Quantum AND (DNA AND (A. 0, B. 1), DNA AND (A. 0, 
B. 1)), DNA AND (A. 1, B. 1)) 
. =Quantum AND (Quantum AND (DNA AND (TGGATC, TGGATC), DNA 
AND (TGGATC, TGGATC)), DNA AND (TGGATC, TGGATC)) 
.= Quantum AND (Quantum AND (TGGATC, TGGATC), TGGATC) 
.= Quantum AND (Quantum AND (0, 0), 0) [Using NMR] 
.= Quantum AND (0, 0) 
.= 0



358 14 Data Conversion Mechanisms

(b) For inputs A. 0, A. 1, B. 0, B. 1 .= ACCTAG, ACCTAG, ACCTAG, TGGATC C. 0

.= Quantum (DNA AND (A. 0, B. 0)) 

.= Quantum (DNA AND (ACCTAG, ACCTAG)) 

.= Quantum (ACCTAG) 

.= 1 [Using NMR]  
C. 1 .= Quantum XOR (DNA AND (A. 0, B. 1), DNA AND (A. 1, B. 0)) 
.= Quantum XOR (DNA AND (ACCTAG, TGGATC), AND (ACCTAG, 
ACCTAG)) 
.= Quantum XOR (TGGATC, ACCTAG) 
.= Quantum XOR (0, 1) [Using NMR] 
.= 1 
C. 2 . =Quantum XOR (Quantum AND (DNA AND (A. 0, B. 1), DNA AND (A. 1, 
B. 0)), DNA AND (A. 1, B. 1)) 
. =Quantum XOR (Quantum AND (DNA AND (ACCTAG, TGGATC), DNA 
AND (ACCTAG, ACCTAG)), DNA AND (ACCTAG, TGGATC) ) 
.= Quantum XOR (Quantum AND (TGGATC, ACCTAG)TGGATC) 
.= Quantum XOR (Quantum AND (0, 1), 0) [Using NMR] 
.= Quantum XOR (0, 0) 
.= 0 
C. 3 . =Quantum AND (Quantum AND (DNA AND (A. 0, B. 1), DNA AND (A. 0, 
B. 1)), DNA AND (A. 1, B. 1)) 
. =Quantum AND (Quantum AND (DNA AND (ACCTAG, TGGATC), DNA 
AND (ACCTAG, ACCTAG)), DNA AND (ACCTAG, TGGATC) ) 
.= Quantum AND (Quantum AND (TGGATC, ACCTAG)TGGATC) 
.= Quantum AND (Quantum AND (0, 1), 0) [Using NMR] 
.= Quantum AND (0, 1) 
.= 0 

(c) For inputs A. 0, A. 1, B. 0, B. 1 . = ACCTAG C. 0 . = DNA (Quantum AND (A. 0, B. 0)) 
.= DNA (Quantum AND (1, 1)) 
.= DNA (ACCTAG) 
.= 1 [Using NMR]  
C. 1 .= Quantum XOR (DNA AND (A. 0, B. 1), DNA AND (A. 1, B. 0)) 
.= Quantum XOR (DNA AND (ACCTAG, ACCTAG), AND (ACCTAG, 
ACCTAG)) 
.= Quantum XOR (ACCTAG, ACCTAG) 
.= Quantum XOR (1, 1) [Using NMR] 
.= 0 
C. 2 . =Quantum XOR (Quantum AND (DNA AND (A. 0, B. 1), DNA AND (A. 1, 
B. 0)), DNA AND (A. 1, B. 1)) 
. =Quantum XOR (Quantum AND (DNA AND (ACCTAG, ACCTAG), DNA 
AND (ACCTAG, ACCTAG)), DNA AND (ACCTAG, ACCTAG)) 
.= Quantum XOR (Quantum AND (ACCTAG, ACCTAG), ACCTAG) 
.= Quantum XOR (Quantum AND (1, 1), 1) [Using NMR] 
.= Quantum XOR (1, 1) 
.= 0



14.3 Data Conversion in DNA-Quantum Circuits 359

C. 3 . =Quantum AND (Quantum AND (DNA AND (A. 0, B. 1), DNA AND (A. 1, 
B. 0))DNA AND (A. 1, B. 1) )  
. =Quantum AND (Quantum AND (DNA AND (ACCTAG, ACCTAG), DNA 
AND (ACCTAG, ACCTAG)), DNA AND (ACCTAG, ACCTAG) ) 
.= Quantum AND (Quantum AND (ACCTAG, ACCTAG)ACCTAG) 
.= Quantum AND (Quantum AND (1, 1), 1) [Using NMR] 
.= Quantum AND (1, 1) 
.= 1 

(d) For inputs A. 0, A. 1, B. 0, B. 1 .= ACCTAG, ACCTAG, TGGATC, ACCTAG C. 0

.= Quantum (DNA AND (A. 0, B. 0)) 

.= Quantum (DNA AND (ACCTAG, TGGATC)) 

.= Quantum (TGGATC) 

.= 0 [Using NMR]  
C. 1 .= Quantum XOR (DNA AND (A. 0, B. 1), DNA AND (A. 1, B. 0)) 
.= Quantum XOR (DNA AND (ACCTAG, ACCTAG), AND (ACCTAG, 
TGGATC)) 
.= Quantum XOR (ACCTAG, TGGATC) 
.= Quantum XOR (1, 0) [Using NMR] 
.= 0 
C. 2 . =Quantum XOR (Quantum AND (DNA AND (A. 0, B. 1), DNA AND (A. 1, 
B. 0)), DNA AND (A. 1, B. 1)) 
. =Quantum XOR (Quantum AND (DNA AND (ACCTAG, ACCTAG), DNA 
AND (ACCTAG, TGGATC)), DNA AND (ACCTAG, ACCTAG)) 
.= Quantum XOR (Quantum AND (ACCTAG, TGGATC), ACCTAG) 
.= Quantum XOR (Quantum AND (1, 0), 1) [Using NMR] 
.= Quantum XOR (0, 1) 
.= 1 
C. 3 . =Quantum AND (Quantum AND (DNA AND (A. 0, B. 1), DNA AND (A. 1, 
B. 0)), DNA AND (A. 1, B. 1)) 
. =Quantum AND (Quantum AND (DNA AND (ACCTAG, ACCTAG), DNA 
AND (ACCTAG, TGGATC)), DNA AND (ACCTAG, ACCTAG)) 
.= Quantum AND (Quantum AND (ACCTAG, TGGATC), ACCTAG) 
.= Quantum AND (Quantum AND (1, 0), 1) [Using NMR] 
.= Quantum AND (0, 1) 
.= 0 

14.3.5 NMR at 0 K Using Cryogenic Probe 

The availability of state polarization decreases as the number of qubits rises, which 
is an evident challenge in building large NMR quantum computers. While the 
exact polarization achieved relies on experimental details, the population difference



360 14 Data Conversion Mechanisms

between the lowest and highest energy states can be used to approximate an upper 
limit. 

The amount of polarization accessible diminishes exponentially as the size of the 
system grows. If the size of the NMR sample is kept constant, the signal strength 
will go off exponentially with the number of qubits; conversely, exponentially large 
samples would be required to maintain a constant signal size. Some other issues can 
occur while using a room temperature probe as decoherence and scaling problems. 

For solving all mentioned problems, the cryogenic probe and pseudo liquid mix-
ture are used. The cryogenic probe works at cool temperatures and temperature 
is proportional to noise. So, if the cryogenic probes are used, then the decoherence 
problem will be solved as per several studies. But if many qubits are used then a polar-
ization problem will be faced. Different DNA-Quantum operations are described in 
this section at 0 K temperature using cryogenic probes. 

14.3.5.1 DNA-Quantum NOT Operation at 0 K 

DNA NOT operation is prepared to produce the output as a complementary sequence 
of the input. To produce output, it needs a single input that contains single strands of 
DNA sequence. it needs, need a base sequence and anneal temperature for the DNA 
operation. After getting the output DNA sequence from DNA NOT operation, it is 
needed to provide it through the NMR process. In NMR, a cryogenic probe at 0 K is 
used. By doing NMR for the DNA sequence, the qubit of normal ground state turns 
into superposition state or ground state according to the input sequence in NMR. The 
output of the NMR operation is a qubit. 

The DNA-Quantum NOT operational gate is the inverter operation, which is one 
of the simplest DNA-Quantum operations. If the input DNA sequence is “false”, 
TGGATC will bind with the provided ACCTAG sequence to form a double stranded 
sequence, where the DNase will have not affect the sequences, and the double 
stranded sequence will be observed, representing a “true” evaluation. Conversely, 
if the input sequence is “true”, then ACCTAG will not bind with the provided ACC-
TAG sequence, where the DNase DNase will destroy both sequences, and no double 
stranded sequences will be observed, representing a “false” evaluation. 

When getting the DNA sequence from DNA NOT operation, this sequence will 
go through NMR as a sample and dive into the probe. Using the NMR process 
using cryogenic probe at 0 K and by emitting EMR, this biomolecule will get a 
superposition state and become a qubit (|Q.> in Fig. 14.46). 

Here, DNA sequence ACCTAG .= TRUE for Quantum qubit |1 .> and DNA 
sequence TGGATC.= FALSE for Quantum qubit |0 . >. 

14.3.5.2 DNA-Quantum OR Operation at 0 K 

Two inputs containing single strands of DNA sequence are required to generate the 
output. Also it needs a base sequence and anneal temperature for the DNA operation.



14.3 Data Conversion in DNA-Quantum Circuits 361

Fig. 14.46 DNA-quantum NOT operation at 0 K 

To produce the expected output for OR operation, the base mixture is chosen carefully. 
Then check each combination of input with the base mixture to match the OR gate 
output. If the base mixture would have the sequence ACCTAG it would work as a 
NOR gate. If the base mixture has the sequence TGGATC, for each combination of 
input sequences it works as OR operation. 

After getting the output DNA sequence from DNA OR operation, it needs to go 
through the NMR process. In NMR, a cryogenic probe at 0 K is used. By performing 
NMR for the DNA sequence, the qubit of normal ground state turns into superposition 
state or ground state according to the input sequence in NMR. The output of the NMR 
operation is a qubit. Figure 14.47 shows the DNA-Quantum OR operation at 0 K. 

The DNA-Quantum OR operation is the most important DNA-Quantum opera-
tion. Consider two sequences, where sequence ACCTAG represents a “true” input and 
the sequence TGGATC represents a “false” input. The OR gate evaluates “true” if one 
or both of the gate inputs are “true.” If a double-stranded sequence is observed, then 
the result is “true”; otherwise, the result is “false.” If both of the input sequences are 
“true” ACCTAG sequences, then one sequence will combine with the supplied “false” 
TGGATC sequence to produce a double-stranded sequence. The DNase will destroy 
the remaining input sequence and the double-stranded sequence will result in a “true” 
evaluation. If one input sequence is “false” and the other is “true,” then the “true” 
ACCTAG sequence will combine with either of the “false” TGGATC sequences to 
produce a double-stranded sequence. The DNase will destroy the remaining “false” 
sequence and the gate will result a “true” evaluation. If both input sequences are 
“false” TGGATC sequences, then neither will combine with the supplied “false”



362 14 Data Conversion Mechanisms

Fig. 14.47 DNA-quantum OR operation at 0 K 

sequence. The DNase will destroy all sequences in the mixture, and result a “false” 
evaluation of the gate. 

When getting the DNA sequence from DNA OR operation, this sequence will go 
through NMR as a sample and dive into the probe. Using the NMR process at 0 K 
and by emitting EMR, this biomolecule will get a superposition state and become a 
qubit (|Q.> in Fig. 14.47). 

Here, DNA sequence ACCTAG .= TRUE for qubit |1 .> and DNA sequence 
TGGATC.= FALSE for qubit |0 . >. 

14.3.5.3 DNA-Quantum XOR Operation at 0 K 

To produce the output, two inputs are needed that have single strands of DNA 
sequence. There is no need of any base sequence. But the anneal temperature is 
needed for the DNA XOR operation. It is needed to check the input sequence. For 
sequences to have opposite values, they are complementary which will bind together 
to form a double-stranded sequence. For each combination of the input sequences, 
the output will be matched. 

After getting the output DNA sequence from the DNA XOR operation, there is 
a need to pass it through the NMR process. In NMR, a room temperature probe is 
used. By doing NMR for the DNA sequence, the qubit of normal ground state turns 
into superposition state or ground state according to the input sequence in NMR. The 
output of the NMR process is a qubit.



14.3 Data Conversion in DNA-Quantum Circuits 363

The DNA-Quantum XOR operational gate is the most important DNA-Quantum 
logic operation. Consider two sequences, where ACCTAG represents a “true” input 
and the sequence TGGATC represents a “false” input. The XOR gate evaluates “true” 
if both sequences of the gate inputs are complementary to each other. They make 
a double-stranded DNA sequence. If a double-stranded sequence is observed, then 
the result is “true”; otherwise, the result is “false.” If both of the input sequences 
are different to each other ACCTAG and TGGATC sequences, then these sequences 
will combine and produce a double-stranded sequence. The DNase will destroy the 
remaining input sequences and the double-stranded sequence will result a “true” 
evaluation. If both input sequence is “false” or “true,” then the sequence will not 
combine with each other. The DNase will destroy all sequences in the mixture, and 
results a “false” evaluation of the operation. 

When getting the DNA sequence from DNA XOR operations, this sequence will 
go through NMR as a sample and dive into the probe. Using the NMR process at 
room temperature and by emitting EMR, this biomolecule will get a superposition 
state and become a qubit (|Q.> in Fig. 14.48). 

Here, DNA sequence ACCTAG .= TRUE for qubit |1 .> and DNA sequence 
TGGATC.= FALSE for qubit |0 . >. 

Fig. 14.48 DNA-quantum XOR operation



364 14 Data Conversion Mechanisms

14.3.5.4 DNA-Quantum Full Adder at 0 K 

DNA-Quantum Full Adder and its working procedure are described previously but 
here the design procedure of DNA-Quantum Full Adder by using a Cryogenic probe 
will be described. The output of different combinations is also shown in Table 14.25. 

To design a DNA-Quantum Full Adder, it needs to use DNA and Quantum oper-
ation to operate the input DNA sequence for their corresponding outputs. The DNA 
operations will be used for receiving the input DNA sequence and the Quantum oper-
ation will be used to produce the final output against the corresponding set of inputs. 
Each time, the DNA-Quantum Full Subtractor will receive three DNA sequences 
as input. After operating a certain number of DNA operations, the DNA sequence 
will be turned into corresponding qubits by using the NMR process, which uses a 
cryogenic probe at 0 K. By using a cryogenic probe at 0 K and corresponding com-
ponents of NMR, a qubit can reach the excited state or grounded state. To find the 
qubit in an excited state one has to emit EMR. After processing through the NMR, 
a DNA sequence is converted into corresponding qubits, and outputs are received. 
Here, Fig. 14.49 describes DNA-Quantum Full Adder by using DNA and Quantum 
operation. 

From Fig. 14.49, it is seen that the DNA-Quantum Full Adder consists of three 
DNA operations and two Quantum operations. Here, two AND and one XOR are 
used as DNA operation and further one XOR and one OR Quantum operations are 
used. 

14.3.5.5 DNA-Quantum Full Subtractor at 0 K 

DNA-Quantum Full Subtractor and its working procedure are already described but 
the design procedure of a DNA-Quantum full subtractor using cryogenic probe at 
0 K is described. The output of different combinations is also shown in Table 14.26. 
Here, Fig. 14.50 describes DNA-Quantum Full Subtractor using DNA and Quantum 
operations. 

To design a DNA-Quantum Full Subtractor, it needs to use DNA and Quantum 
operations to operate the input qubit for their corresponding outputs. The DNA 
operations will be used for receiving the input DNA sequence and the Quantum 
operations will be used to produce the final output against the corresponding set 
of inputs. Each time, the DNA-Quantum Full Subtractor will receive three DNA 
sequences as inputs. 

After operating in a certain number of DNA operations, the DNA sequence will 
be turned into corresponding qubits by NMR by using a Cryogenic probe at 0 K. By 
using a Cryogenic probe at 0 K and corresponding components of NMR, the neutral 
qubit goes to an excited state for emitting EMR. Then the qubit is processed through 
Quantum operations and outputs are received. 

From the Fig. 14.50, it is seen that the DNA-Quantum Full Subtractor consists of 
three DNA operations and two Quantum operations. Here, two AND and one XOR



14.3 Data Conversion in DNA-Quantum Circuits 365

Fig. 14.49 DNA-quantum full adder at 0 K 

are used as DNA operations and further one XOR and one OR Quantum operations 
are used. 

14.3.5.6 DNA-Quantum 2-to-1 Multiplexer at 0 K 

Section 14.3.4.2 has already described DNA-Quantum 2-to-1 Multiplexer and its 
working procedure but this section also discusses the design procedure of DNA-
Quantum Multiplexer using Cryogenic probe at 0 K. The output of different combi-
nations is also shown in Table 14.27. 

To design a DNA-Quantum 2-to-1 Multiplexer, DNA and Quantum operations are 
used to operate the input DNA sequence for their corresponding outputs. The DNA 
operations will be used for receiving the input sequence and the Quantum opera-
tional gates will be used to produce the final output against the corresponding set of 
inputs. Each time, the DNA-Quantum multiplexer will receive three DNA sequences 
as inputs. After operating a certain number of DNA operations, the sequence will



366 14 Data Conversion Mechanisms

Fig. 14.50 DNA-quantum full subtractor at 0 K 

be turned into corresponding qubits by using NMR. The NMR process will be per-
formed by using a Cryogenic probe at 0 K. By using a Cryogenic probe at 0 K and 
corresponding components of NMR, the grounded qubit turns into super-positioned. 
Then the qubit is processed through Quantum operations and outputs are received. 
Here, Fig. 14.51 describes quantum-DNA multiplexer using DNA operations and 
quantum operations. 

From the figure, it is found that the DNA-quantum 2-to-1 multiplexer consists of 
three DNA operations and one quantum operation. Here, two AND and one NOT 
are used as DNA operations and further one quantum OR operation is used. 

14.3.6 Quadrupole Ion Trap 

A quadrupole ion trap is such an ion trap that uses dynamic electric fields to trap any 
charged particles. This ion trap is also called the Paul trap or radio frequency trap



14.3 Data Conversion in DNA-Quantum Circuits 367

Fig. 14.51 DNA-quantum 2-to-1 multiplexer at 0 K 

(RF). This trap is used as a component of a mass spectrometer and/or a trapped ion 
quantum computer. 

14.3.6.1 Components of Quadrupole Ion Trap 

The quadrupole ion trap consists of some components like ion beam, end cap, Ring 
electrode, RF voltage, and AC voltage. A little bit explanation of these components 
is given below: 

1. Ion Beam 
An ion beam is a type of charged particle beam that can consist of ions. 

2. End-Cap Electrodes 
Leading the trap, ion accumulation allows efficient ions to hold the injected ions



368 14 Data Conversion Mechanisms

with low kinetic energies. In this case, end-cap electrodes carry small DC voltages. 
However, these DC potentials are used to trap ions in the axial dimension. 

3. Ring Electrodes 
The trap consists of four blade-shaped electrodes of which two opposing ones are 
connected to an RF-voltage while the other two are connected to the ground. It 
also includes two end-cap electrodes that are connected to a positive DC voltage. 

4. RF Voltage and AC voltage 
All Radio Frequency (RF) signals are Alternating Current (AC) signals and have 
an amplitude that can be measured in Volts. So an RF voltage is just an AC voltage. 
RF signals can be any of a wide range of frequencies. 

The block diagram of quadrupole ion trap is shown in Fig. 14.52 and the circuit 
diagram of quadrupole ion trap is shown in Fig. 14.53. 

14.3.6.2 Working Principle of Quadrupole Ion Trap 

The quadrupole ion consists of two hyperbolic metal electrodes with the focuses 
facing each other and a hyperbolic ring electrode halfway between the other two 
electrodes. The injected ions are trapped by AC (oscillating) and DC (static) electric 
fields. The AC radio frequency voltage oscillates between the two hyperbolic metal 
end cap electrodes if ion excitation is desired; the driving AC voltage is applied to the 

Fig. 14.52 Block diagram of quadrupole ion trap



14.3 Data Conversion in DNA-Quantum Circuits 369

Fig. 14.53 Circuit diagram of quadrupole trap ion 

ring electrode. At first, the ions are pulled up and down axially when they are pushed 
in radially. After that, the ions are pulled out radially and pushed in axially (from 
the top and bottom). In this way the ions move in a complex motion that generally 
involves the cloud of ions being long and narrow and then short and wide, back and 
forth, oscillating between the two states. The motion of these ions in this field is 
described by solutions to the Mathieu equation. When it is written for ion motion in 
a trap, the equation is 

.
d2u

d∈2
+ [au − 2qucos (2 ∈) ] u = 0 (14.8) 

where. μ presents the x, y, and z coordinates is a dimensionless variable given by,. ε . =
. �t/2, and a.u and q. u are dimensionless trapping parameters. The parameter .� radial 
frequency of the potential is applied to the ring electrode. By using the chain rule, it 
can be shown that 

.
d2u

dt2
= Ω2

4

d2u

dε2
(14.9)



370 14 Data Conversion Mechanisms

Substituting Eqs. 14.9 in 14.8 yields 

.
4

Ω2

d2u

d∈2
+ [au − 2qucos (Ωt) ] u = 0 (14.10) 

Multiplying this equation by m and rearranging terms shows us that 

.m
d2u

d∈2
+ m

Ω2

4
[au − 2qucos (Ωt) ] u = 0 (14.11) 

The above equation represents the force of the ion By Newton’s laws of motion 
formula. The forces in each dimension are not coupled, thus the force acting on an 
ion. For example, the X dimension is 

.Fx = ma = m
d2x

dt2
= −e

∂∅
∂x

(14.12) 

Here is the quadrupole potential, given by 

.∅ = ∅0

r20
(λx2 + σ y2 + γ z2) (14.13) 

Where, .∅0 is the applied electric potential and . λ, . σ and . γ are weighting factors, and 
r. 0 is a size parameter constant. To satisfy Laplace equations, it can be 
.λ .+ .σ .+ .γ .= 0 
For an ion trap, .λ .= .σ .= 1, and .γ .= −2 and for a quadrupole mass filter, 
.λ .= − .σ .= 1 and .γ .= 0 
Transforming Eq. 14.13 into a cylindrical coordinate system with x=rcos. θ, y .= rsin 
. θ and z .= z 
and applying the trigonometric formula sin. 2. θ .+ cos 2. θ .= 1 gives  

.∅r,z = ∅0

r20
(r2 − 2z2) (14.14) 

The applied electric potential is a combination of RF and DC given by 

.∅0 = U + VcosΩt (14.15) 

where .� .= 2. πv and v is the applied frequency in Hertz. 
Substituting Eq. 14.15 into Eq. 14.13 with .λ .= 1 gives  

.
∂∅
∂x

= 2x

r20
(U + VcosΩt (14.16)



14.3 Data Conversion in DNA-Quantum Circuits 371

Substituting Eq. 14.16 into Eq. 14.12 leads to 

.m
d2x

dt2
= − 2e

r20
(U + VcosΩt) x (14.17) 

Comparing terms on the right-hand side of Eqs. 14.7 and 14.17 leads to 

.ax = 8eU

mr20Ω
2

(14.18) 

and 

.qx = 4eV

mr20Ω
2

(14.19) 

Further . qx = qy

.az = 16eU

mr20Ω
2

(14.20) 

and 

.qz = 8eV

mr20Ω
2

(14.21) 

The trapping of ions can be understood in terms of stability regions in form Eq. 
(14.18) and Eq. (14.19) space. 

14.3.6.3 DNA-Quantum AND Operation with Quadrupole Ion Trap 

In this portion, an AND gate is used by combining a quantum gate and a DNA gate. 
And this new gate is called the DNA-quantum AND gate. In this circuit, the following 
terms are used: 

1. DNA NAND operation 
The AND gate is easily formed from the NAND gate. After that, doing CNOT 
operation of NAND gate, quantum AND operation is possible to achieve. In 
this quantum CNOT gate, Constant |1.> which acts as the target qubit has been 
assumed. If 0 is considered as a target qubit then output will always be the reverse 
of real output. 

2. Quadrupole Ion trap 
After DNA NAND gate operation, DNA sequence that would be gained as out-
put has been trapped. During trap, the sequence will go to superposition which 
produces qubit. 

3. Quantum CNOT operation 
After producing a qubit, it will be used as input into the CNOT gate that will 
produce the final output.



372 14 Data Conversion Mechanisms

Fig. 14.54 DNA-quantum AND operation 

Table 14.29 Truth table of DNA-quantum AND gate 

A B Base Output 

TGGATC TGGATC ACCTAG |0. >

TGGATC ACCTAG ACCTAG |0. >

ACCTAG TGGATC ACCTAG |0. >

ACCTAG ACCTAG ACCTAG |1. >

Figure 14.54 shows the DNA-quantum AND Operation with quadrupole ion trap and 
Table 14.29 shows the truth table of DNA-quantum AND operation. 

To execute DNA-quantum AND gate, the following steps are performed: 

1. First of all, DNA NAND gate is performed here. The NAND gate evaluates “true” 
(ACCTAG) if both inputs are low or false. If one input is high and another is low or 
opposite of this then output will be high or true. The NAND gate provides only the 
false or low output when the both outputs are high or true. According to the given 
input the DNA sequence makes a double strand sequence. This double strand 
will be either “True” or “False”. For example, if both inputs are high (ACCTAG), 
no input will make a double-strand with the base sequence that is given in a 
tube. As there will be no bond, the Output will be 0. Every time the DNase 
will destroy the single-stranded sequence in this mixture. If a double stranded 
sequence is observed, the result is “true” (ACCTAG); otherwise, the result is 
“false” (TGGATC). 

2. For each combination, the NAND gate will produce one DNA sequence (“ACC-
TAG” or “TRUE”) or (“TGGATC” or “FALSE”) which will be injected in the 
trap ion, and in the trap ion, they will produce qubit. This qubit will be the input



14.3 Data Conversion in DNA-Quantum Circuits 373

of quantum CNOT gate. In CNOT gate, control bit |1.> is assumed as constant. 
As it is assumed 0, the output will always be reversed for the real output. After 
this CNOT operation, the final output will be achieved which is a combination of 
DNA NAND gate and quantum CNOT gate. 

14.3.6.4 DNA-Quantum NOR Operation with Quadrupole Ion Trap 

Quantum DNA NOR operation is shown in Fig. 14.55 using quadrupole ion trap. 
Here, OR operation is performed using DNA OR gate operation and NOT operation 
performed using quantum CNOT operation. To get the desired output of quantum 
NOT gate operation, an ancillary bit |1.> is fixed in quantum CNOT gate operation. 

1. Design Procedure of DNA-quantum NOR Gate 
In this portion, an OR gate is designed combining a quantum gate and a DNA gate. 
And this new gate is called the DNA-quantum gate. In this circuit, the following 
terms are used: 

(a) Quantum NOR operation 
The OR operation is easily formed from the NOR operation. After that, doing 
NOT operation on NOR operation, OR operation is possible to achieve. In 
this quantum CNOT gate, constant |1. > acts as the target bit. If 0 is considered 
as a target bit then the output will always be the reverse for real output. 

(b) Ion trap 
After DNA NOR operation, the DNA sequence has been trapped for produc-
ing qubit. 

(c) Quantum CNOT operation 
After producing qubit, it will be used as input in the CNOT gate which will 
produce the final output. 

2. Working Principle of a DNA-quantum NOR Operation 
To execute DNA-quantum NOR operation, the following steps are performed. 
The truth table of DNA-Quantum NOR operation is given in Table 14.30. 

Fig. 14.55 DNA-quantum NOR operation



374 14 Data Conversion Mechanisms

Table 14.30 Truth table of DNA-quantum NOR gate 

A0 A1 Base Output 

TGGATC TGGATC TGGATC |1. >

TGGATC ACCTAG TGGATC |0. >

ACCTAG TGGATC TGGATC |0. >

ACCTAG ACCTAG TGGATC |0. >

(a) First of all, DNA-quantum NOR operation is performed here. The NOR 
operation evaluates “true” (ACCTAG) only when both inputs are low or 
false(“TGGATC”). If one input is high and another is low or opposite of 
this then the output will be always low or false (“TGGATC”). Moreover, The 
NOR operation provides the false (“TGGATC”) or low output when they’re 
both outputs are high or true (ACCTAG). According to the given input, the 
DNA sequence makes a double strand sequence. This double-strand will be 
“True” or “False”. For example, if one input is high (ACCTAG) and the other 
one is low (“TGGATC”), one input (TGGATC) will make a double-strand 
with the base sequence (ACCTAG) which is given in tube and the DNase will 
destroy the rest of the single stranded sequence in this mixture. If a double 
stranded sequence is observed, then the result is “true” (ACCTAG); other-
wise, the result is “false” (TGGATC). Not only for this operation but also all 
operations will work like this. 

(b) For each combination, the NOR operation will produce one DNA sequence 
(“ACCTAG” or “TRUE”) or (“TGGATC” or “FALSE”) which will be injected 
in the trap ion and in the trap ion, they will produce qubit. This qubit will 
be the input of quantum CNOT operation. In CNOT operation control bit 
|1.> is assumed as constant. As it is assumed 0, the output will always be 
reversed for the real output. After this CNOT operation, the final output will 
be achieved which is a combination of DNA NAND operation and quantum 
CNOT operation. 

14.4 Summary 

Calculations of a quantum computer are especially promising for analyzing or sim-
ulating extremely complicated processes with large volumes of data. Quantum com-
puters may help researchers to get a better and more detailed understanding of how 
specific particles, components, and processes interact in live cells. However, there are 
also possible medical applications. Most importantly, experts believe that quantum 
computers will go forward with artificial intelligence (AI) significantly. These could 
then safely and reliably take over tasks such as data evaluation or forecasting in the 
future.



14.4 Summary 375

Furthermore, DNA computing is a new technology which uses DNA molecules 
to create computers that are quicker than the most powerful human-built computers 
in the market. The DNA computers of the future will be able to work in a massively 
parallel fashion, completing several calculations at the same time. In practically every 
sector, DNA computers have made significant developments. 

To advance computation, DNA-Quantum computing systems can be used, which 
will merge all the advantages of both DNA computing and quantum computing. 
In DNA-Quantum computing, input data is in DNA sequence and the output is in 
qubit. It uses NMR to convert DNA sequences into qubits. Again, in Quantum-DNA 
computing, input data is in qubit and the output is in DNA sequence. Quantum-
DNA uses NMR relaxation to convert qubits into DNA sequences. Here, different 
types of operational circuits such as Full Adder, Half Subtractor, Full Subtractor, 
Multiplier, Parity checker, and multiplexer are discussed, where both DNA-Quantum 
and Quantum-DNA computing processes are used.



Chapter 15 
Data Management Techniques 

15.1 Introduction 

Both quantum computing and DNA computing approaches can be used to accomplish 
operations at a very high speed and efficiency. There is a critical issue that occurs 
when merging both computing systems for a single activity. Quantum computers are 
a million times quicker than the world’s fastest supercomputer. As a result, quantum 
operations produce instantaneous results. However, DNA procedures take a long 
time to prepare for its operations. So, the quantum computer’s output qubits cannot 
be instantly inserted into the DNA system. Thus, when working with the Quantum-
DNA system, a temporary storage device or system is required where the qubits may 
be kept for a very short time. So, a quantum cache memory is needed to store qubits 
during a Quantum-DNA computing circuit operation. The structure and working 
procedure of quantum and DNA cache memory are described in this chapter. In the 
DNA-Quantum circuit operation, a DNA cache memory is needed to store DNA 
sequences for temporary purpose. 

As a result, when working with the quantum-DNA system and DNA-quantum 
system, a temporary storage device or system is required where the qubits or DNA 
sequences may be kept for a very short time. So, quantum cache memory is needed 
to operate a quantum-DNA circuit; and DNA cache memory is needed to operate a 
DNA-quantum circuit, which can store data for a short amount of time and can pass 
it to another. 

15.2 Quantum Cache Memory 

Cache memory is a supplementary memory system that temporarily stores frequently 
used instructions and data for quicker processing. It is an extremely fast memory type 
that holds frequently requested data and instructions so that they are immediately 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9_15 

377

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-5349-9_15&domain=pdf
https://doi.org/10.1007/978-981-97-5349-9_15
https://doi.org/10.1007/978-981-97-5349-9_15
https://doi.org/10.1007/978-981-97-5349-9_15
https://doi.org/10.1007/978-981-97-5349-9_15
https://doi.org/10.1007/978-981-97-5349-9_15
https://doi.org/10.1007/978-981-97-5349-9_15
https://doi.org/10.1007/978-981-97-5349-9_15
https://doi.org/10.1007/978-981-97-5349-9_15
https://doi.org/10.1007/978-981-97-5349-9_15
https://doi.org/10.1007/978-981-97-5349-9_15
https://doi.org/10.1007/978-981-97-5349-9_15


378 15 Data Management Techniques

Fig. 15.1 Logic symbol of D flip-flop 

available for further processing. In most microprocessors, Static Random-Access 
Memory (SRAM) is used as cache memory as SRAM has a very high speed. Due to 
this high speed, cache memory can be used to store data temporarily, which will be 
designed for the quantum computer. 

15.2.1 D Flip-Flop 

A cache memory is designed using the D flip-flops which will create a one-bit SRAM 
along with Read/Write and select bit as input. A Delay flip-flop or D flip-flop is an 
electronic circuit used to delay the change of state of its output signal (Q) until the 
next rising edge of a clock timing input signal occurs. Figure 15.1 shows the logic 
symbol for a D flip-flop. Further, Fig. 15.2 shows the circuit diagram of the Quantum 
D flip-flop. 

D flip-flip works on two states, SET and RESET. The following truth table will 
show the operations of a D flip-flop. Input-output table of the D flip-flop is given in 
Table 15.1. 

15.2.1.1 Design Procedure 

Cache memory can be used in the quantum system due to its speed and reliability. 
It can pass and get data very frequently. The mapping and swapping techniques in 
the cache memory are much optimized. It is known that cache memory is nothing 
but SRAM which is made out of D flip-flops and other gates. Figure 15.2 shows the 
design of the D flip-flop, which needs two inputs |D.> and |CLK.> pulse. 

To design the quantum D flip-flop, five quantum NAND operations including a 
clock pulse are used. Here, |D.> is the quantum qubits that are |0.> and |1. >. When 
the CLK pulse is 1, the quantum D flip-flop transfers the |D.> input to output |Q. >

and if the CLK pulse is 0, then the output remains unchanged.



15.2 Quantum Cache Memory 379

Table 15.1 Input-output table of D flip-flop 

|D.> |CLK.> |Q.> |. Q>

|0.> |1.> |0.> |1. >

|1.> |1.> |1.> |0. >

X 0 Q . Q

15.2.2 Quantum One-Qubit Cache Memory 

A one-bit quantum cache memory will be constructed using the previously designed 
quantum D flip-flop. The circuit diagram of the quantum one-qubit cache memory 
can be shown in Fig. 15.3. 

The circuit of one-qubit quantum cache memory contains six quantum NAND 
and three quantum AND operations. Again, | R/.W .> = |1.> indicates the READ 
operation and | R/.W .> = |0.> indicates the WRITE operation. Here, |S.> indicates 
the select qubit, where |S.> = |1.> means the memory which is selected. 

15.2.3 Quantum Eight-Qubit Cache Memory 

A 4-to-2 quantum cache memory is formed using 8 quantum cache memory cells 
(one-qubit quantum cache memory). Figure 15.4 shows a 4-to-2 quantum cache mem-

Quantum NAND 
 Operation 

Quantum NAND
   Operations 

Quantum NAND
   Operations 

Fig. 15.2 Circuit diagram of quantum D flip-flop



380 15 Data Management Techniques

Quantum
   NAND 

Quantum
    NAND 

Quantum
    NAND 

Quantum
    AND 

    Quantum 
NAND & AND 

Fig. 15.3 The circuit diagram of one-bit quantum cache memory 

ory that contains 8 quantum cache memory cells, providing two-qubit output and four 
locations (00, 01, 10, and 11). 

The quantum 4-to-2 cache memory contains a quantum 2-to-4 decoder which 
decodes the input qubits into 4 output qubits. Here, R indicates the quantum cache 
memory cell. The circuit of the quantum 4-to-2 cache memory includes a 2-to-4 

Quantum Decoder
       Operations 

One bit Cache 
Memory Cell Quantum OR Operations 

Quantum AND Operations 

Quantum OR Operations 

Fig. 15.4 The circuit diagram of quantum 4-to-2 cache memory



15.2 Quantum Cache Memory 381

decoder, 8 quantum cache memory cells, 6 quantum OR operations, where inputs 
are two qubits and |R/W. >| signal. 

15.2.3.1 Working Procedure of the Quantum Cache Memory 

Figure 15.4 shows a 4-to-2 quantum cache memory. It includes 8 quantum cache 
memory cells providing two-qubit output and four locations. The cache memory 
has a 2-to-4 quantum decoder and 8 quantum cache memory cells implemented with 
quantum D flip-flops and quantum gates. The four locations (00, 01, 10, and 11) in the 
cache memory are addressed by 2 qubits (A. 1, A. 0). In order to read from location 00, 
the address A. 1A.0 = 00 and |R/W.>=1|. >. The decoder selects |0. >, high. |R/W.>=| 
1 will apply 0 at the clock inputs of the two quantum cache memory cells of the 
top row and will apply 1 at the inputs of the output quantum AND operations, thus 
transferring the outputs of the two quantum D flip-flops to the inputs of the two 
quantum OR operations. The other inputs of the quantum OR operations will be 0. 

Thus, the outputs of the two quantum cache memory cells of the top row will be 
transferred to DO. 1, and DO. 0, performing a READ operation. 

On the other hand, consider a WRITE operation; the two-qubit data to be written 
is presented at |DI.1> |DI.0>. Suppose |A.1> |A.0> = |0. > |0. >. The top row is selected 
(0.0 = 1). Input qubits at |DI.1> and |DI.0> will respectively be applied at the inputs 
of the D flip-flops of the top row. Because |R/W.>=|. >, the clock inputs of both the 
quantum D flip-flops of the top row are |1. >. Thus, the D inputs are transferred to the 
outputs of the flip-flops. 

Therefore, data at DI. 1 DI. 0 will be written into the quantum cache memory. The 
block diagram for a quantum cache memory is shown in Fig. 15.5. 

Fig. 15.5 Block diagram of 
a quantum cache memory



382 15 Data Management Techniques

15.3 Data Management in Quantum-DNA Circuits 

According to quantum computing, quantum computation is faster than classical com-
putation systems. Quantum computers are also more powerful than supercomputers 
in terms of computing. They are thousands of times faster than regular computers 
and supercomputers at processing data. Quantum computers can execute calculations 
that would take a regular computer 1000 years to complete in a matter of seconds. 
On the other hand, the use of DNA strands to compute has led to high parallel com-
putation that makes up for the slow processing of the chip. Memory space required 
by DNA is around 1 bit per cubic nanometer which is much less when compared to 
regular storage systems Consumption of power is almost nil as the chemical bonds 
in DNA produce energy to build or repair new strands. So, to find a super faster 
computation system with huge memory, a Quantum-DNA computation system can 
be developed. This Quantum-DNA computation system can merge all advantages of 
quantum computing and DNA computing. 

In a Quantum-DNA computing system, the input will be received as a qubit and 
after performing a certain number of quantum operations these qubits will be turned 
into DNA sequences by NMR relaxation. 

15.3.1 Data Management in Quantum-DNA Full Adder 

A full adder is an adder that adds three inputs and produces two outputs. The first 
two inputs are A and B and the third input is an input carry as C. in . The output carry is 
designated as C.out and the normal output is designated as S which is Sum. A full adder 
logic is designated in such a manner that can take eight inputs together to create a qubit 
adder and cascade the carry qubit from one adder to another. To create a full adder, 
one OR, two AND, and two XOR operations are required. Figure 15.6 describes the 
Quantum-DNA circuit of the full adder. 

15.3.1.1 Design Procedure 

To design a Quantum-DNA full-adder quantum and DNA operations can be used 
so that it can be operated using the input qubit for their corresponding outputs. 
The Quantum operations will be used for receiving the input qubits and the DNA 
operations will be used to produce the final output against the corresponding set of 
inputs. Each time, the Quantum-DNA full adder will receive three qubits as input. 
After performing a certain number of Quantum operations, the qubit will be stored in 
Cache memory. To store 4 qubits, a 16-to-4 Quantum cache memory is required. After 
getting the qubits from cache memory, they will be turned into the corresponding 
DNA sequence by using an NMR relaxation room temperature probe. By using a 
room temperature probe and corresponding components of NMR relaxation, the



15.3 Data Management in Quantum-DNA Circuits 383

Lorem ipsum 

Lorem ipsumLorem ipsum 
Lorem ipsum ttttttttttt 

ttttttttt 

Lorem ipsum 
Lorem ipsumLorem ipsum 

A
nn

ea
l 

>
60

o
A

nn
ea

l 
>

60
o 

A
nn

ea
l 

>
60

o 

A
nn

ea
l 

>
60

o 

A
nn

ea
l 

>
60

o 

DNA XOR & NAND 
     Operations 

DNA XOR & NOT 
     Operations 

Fig. 15.6 Circuit of quantum-DNA full adder with cache memory 

excited qubit turns into a ground state and produces a DNA sequence. Then the 
DNA sequence is processed through DNA operations and outputs are received. Here, 
Fig. 15.6 describes Quantum-DNA full adder using Quantum and DNA operations. 

From Fig. 15.6, it is found that the Quantum-DNA full adder consists of three 
Quantum operational gates, two DNA operations and a 16-to-4 cache memory. Here, 
two AND and one XOR are used as Quantum operations and further one XOR and 
one OR DNA operations are used. 

15.3.1.2 Working Procedure 

The working procedure of the Quantum-DNA full adder is given below for each 
pattern of input qubits. Here, DNA sequence ACCTAG = TRUE for qubit | 1 .> and 
DNA sequence TGGATC = FALSE for qubit | 0 .> are used.



384 15 Data Management Techniques

Table 15.2 Outputs of quantum-DNA full-adder operation 

|A0.> |A1.> |Q.> SUM Carry 

|0.> |0.> |0.> TGGATC TGGATC 

|0.> |0.> |1.> ACCTAG TGGATC 

|0.> |1.> |0.> ACCTAG TGGATC 

|0.> |1.> |1.> TGGATC ACCTAG 

|1.> |0.> |0.> ACCTAG TGGATC 

|1.> |0.> |1.> TGGATC ACCTAG 

|1.> |1.> |0.> TGGATC ACCTAG 

|1.> |1.> |1.> ACCTAG ACCTAG 

To store qubits in cache memory, 4 locations select line (A, B, C and D), one CLK 
input line, one |R/W. >| input line and 4-input qubit lines in cache memory (DI. 1, DI. 2, 
DI. 3, and DI. 4) are needed. The output from the cache memory will be DO. 0, DO. 1, 
DO. 2, and DO. 3. 

The working procedure of the Quantum-DNA full adder within cache memory is 
given below for one pattern of input qubits and the outputs for different combinations 
of inputs are given in Table 15.2. Here, the inputs of cache memory from the quantum 
gates are given as follows: 

1. For inputs A, B, C .= 0, 
DI. 1 .= A.= 0 
DI.2 .= Quantum XOR (A, B) 
.= Quantum XOR (0, 0) 
.= 0 
DI.3 .= Quantum XOR (XOR (A, B), C) 
.= Quantum XOR (XOR (0, 0), 0) 
.= Quantum XOR (0, 0) 
.= 0 
DI.4 .= Quantum AND (A, B) 
.= Quantum AND (0, 0) 
.= 0 

The output of Quantum cache memory will be converted into DNA sequence using 
NMR relaxation. For qubit |0.> DNA sequence is TGGATC. 
Sum .= DNA XOR (DO. 0, DO. 1) 
.= DNA XOR (TGGATC, TGGATC) 
.= TGGATC 
Carry .= DNA OR (DO. 2, DO. 3) 
.= DNA XOR (TGGATC, TGGATC) 
.= TGGATC



15.3 Data Management in Quantum-DNA Circuits 385

15.3.2 Data Management in Quantum-DNA Multiplier 

A binary multiplier is a combinational circuit or digital device used for multiplying 
two binary numbers. The two numbers are more specifically known as multiplicand 
and multiplier and the result is known as a product. The multiplicand and multiplier 
can be of various bit sizes. The product’s bit size depends on the bit size of the 
multiplicand and multiplier. The bit size of the product is equal to the sum of the bit 
size of multiplier multiplicand. To create a Multiplication circuit, six AND and two 
XOR operations are required. Figure 15.7 describes the Quantum-DNA circuit of the 
two-qubit multiplication. 

A
nn

ea
l 

>6
0

o 

A
nn

ea
l 

>6
0

o 
A

nn
ea

l 

>6
0

o 

A
nn

ea
l 

>6
0

o 

Quantum AND 
Operations 

NMR 
Relaxation 

DNA XOR & AND 
Operations 

Q
ua

nt
um

 C
ac

he
 

M
em

or
y 

Fig. 15.7 Circuit of quantum-DNA multiplier with cache memory



386 15 Data Management Techniques

15.3.2.1 Design Procedure of Quantum-DNA Multiplier 

To design a quantum-DNA multiplier, quantum operations and DNA operations 
are used to operate the input qubit for their corresponding outputs. The quantum 
operations will be used for receiving the input qubits; and the DNA operations will 
be used to produce the final output against the corresponding set of inputs. Each 
time, the quantum-DNA Multiplier will receive four qubits as input. After operating 
in a certain number of quantum operations, the qubit will be stored in quantum cache 
memory. To store 4 qubits, a 16.× 4 quantum cache memory is needed. 

After getting the qubits from cache memory, it will be turned into correspond-
ing DNA sequence by using NMR relaxation room temperature probe. By using 
a room temperature probe and corresponding components of NMR relaxation, the 
excited qubit turns into ground state and produces a DNA sequence. Then the DNA 
sequence is processed through DNA operations and outputs are received. Figure 15.7 
describes quantum-DNA multiplier using quantum operations and DNA operations. 
From Fig. 15.7, it is found that the quantum-DNA multiplier consists of four quan-
tum operations, four DNA operations and a 16.× 4 cache memory. Here, four AND 
operations are used in quantum operation and storing qubits in cache memory and 
further two XOR and two DNA AND operations to provide the output. 

15.3.2.2 Working Procedure of the Quantum-DNA Multiplier 

The working procedure of the quantum-DNA multiplier is given below for each 
pattern of input qubits. Here, DNA sequence ACCTAG.= TRUE for qubit | 1 .> and 
DNA sequence TGGATC.= FALSE for qubit | 0 .> are used. 

To store qubits in cache memory, 4 locations select line (A, B, C and D), one CLK 
input line, one |R/W. >| input line and 4 input qubit lines in cache memory (DI. 1, DI. 2, 
DI. 3, and DI. 4). The output from the cache memory will be DO. 0, DO. 1, DO. 2, and DO. 3

are needed. 
The working procedure of the quantum-DNA multiplier within cache memory is 

given below for one pattern of input qubits. Here, the inputs of cache memory from 
the quantum gates are given follows: 

1. For inputs A. 0, A. 1, B. 0, B. 1 .= 0, 
DI.1 .= Quantum AND (A. 0, B. 1) 
.= Quantum AND (0, 0) 
.= 0 
DI.2 .= Quantum AND (A. 0, B. 0) 
.= Quantum AND (0, 0) 
.= 0 
DI.3 .= Quantum AND (A. 1, B. 0) 
.= Quantum AND (0, 0) 
.= 0 
DI.4 .= Quantum AND (A. 1, B. 1)



15.3 Data Management in Quantum-DNA Circuits 387

.= Quantum AND (0, 0) 

.= 0 

Output of quantum cache memory will be converted into DNA sequence using NMR 
relaxation at room temperature. For qubit |0.> DNA sequence is TGGATC. 

C. 0 .= DNA XOR (DO. 0, DO. 2) 
.= DNA XOR (TGGATC, TGGATC) 
.= TGGATC 
C. 1 .= TGGATC 
C. 2 .= DNA XOR (AND (DO. 1, DO. 2), DO. 3) 
.= DNA XOR (AND (TGGATC, TGGATC), TGGATC) 
.= DNA XOR (TGGATC, TGGATC) 

.= TGGATC 
C. 3 .= DNA XOR (AND (DO. 1, DO. 2), DO. 3) 
.= DNA XOR (AND (TGGATC, TGGATC), TGGATC) 
.= DNA XOR (TGGATC, TGGATC) 

.= TGGATC 

15.3.3 Data Management in Quantum-DNA Half Subtractor 

A half subtractor is a type of subtractor, an electronic circuit that performs the sub-
tractions of numbers. The half subtractor can subtract two single digits and provide 
the output plus a borrow value. It has two inputs, called A and B, and two outputs D 
(difference) and B (borrow). Quantum-DNA half subtractor will subtract two qubits 
from the quantum digit |0. >, and |1. > and produce two outputs as DNA difference |D. >

and DNA borrow sequence |B. >. The quantum-DNA circuit for the half subtractor is 
shown in Fig. 15.8. 

15.3.3.1 Design Procedure 

To design a quantum-DNA half subtractor, quantum and DNA operations are used 
to operate the input qubit for their corresponding outputs. The quantum operations 
will be used for receiving the input qubits and the DNA operations will be used 
to produce the final output against the corresponding set of inputs. Each time, the 
quantum-DNA half subtractor will receive two qubits as input. After performing in 
a certain number of quantum operations, the qubit will be stored in quantum cache 
memory. To store 3 qubits, an 8.× 3 quantum cache memory is needed. 

After getting the qubits from quantum cache memory, they will be turned into 
corresponding DNA sequences using an NMR relaxation room temperature probe. By 
using a room temperature probe and corresponding components of NMR relaxation, 
the excited qubit turns into a ground state and produces a DNA sequence. Then 
the DNA sequence is processed through DNA operations and outputs are received.



388 15 Data Management Techniques

A
nn

ea
l 

>6
0 

o 

Quantum 
XOR 

DNA XOR 
Operations 

NMR 
Relaxation 

Q
ua

nt
um

 C
ac

he
 

M
em

or
y 

Fig. 15.8 Circuit of quantum-DNA half subtractor with cache memory 

Here, Fig. 15.8 describes quantum-DNA half subtractor using quantum operations 
and DNA operations. 

Based on the Fig. 15.8, it is found that the quantum-DNA multiplier consists of 
two quantum operations, one DNA operations and an 8-to-3 cache memory. Here, 
one XOR and one NOT operations are used in quantum operation and stored qubits 
in quantum cache memory and further one DNA XOR operation is needed to provide 
the output. 

15.3.3.2 Working Procedure 

The working procedure of the quantum-DNA half subtractor is given below for each 
pattern of input qubits. Here, DNA sequence ACCTAG.= TRUE for qubit | 1 .> and 
DNA sequence TGGATC.= FALSE for qubit | 0 .> are used.



15.3 Data Management in Quantum-DNA Circuits 389

Table 15.3 Outputs of quantum-DNA half subtractor operation 

|A.> |B.> DI.1 DI.2 DI.3 Difference Borrow 

|0.> |0.> |1.> |0.> |0.> TGGATC TGGATC 

|0.> |1.> |0.> |0.> |1.> ACCTAG ACCTAG 

|1.> |0.> |1.> |1.> |1.> ACCTAG TGGATC 

|1.> |1.> |0.> |1.> |0.> TGGATC TGGATC 

To store qubits in cache memory, 3 locations select line (A, B and C), one CLK 
input line, one |R/W. >| input line and 3 input qubit lines in cache memory (DI. 1, DI. 2
and DI. 3). The output from the cache memory will be DO. 0, DO. 1, and DO. 2 are needed. 

The working procedure of the quantum-DNA half subtractor within cache memory 
is given below for one pattern of input qubits and the outputs for different combina-
tions of inputs are given in Table 15.3. Here, the inputs of cache memory from the 
quantum gates are given as follows: 

1. For inputs A .= 1, B .= 0, 
DI.1 .= Quantum NOT (B) 
.= Quantum NOT (0) 
.= 1 
DI.2 .= A.= 1 
DI.3 .= Quantum XOR (A, B) 
.= Quantum XOR (1, 0) 
.= 1 

The output of quantum cache memory will be converted into DNA sequence using 
NMR relaxation at room temperature. For qubit |1.> DNA sequence is ACCTAG. 

B.out .= DO.0 .= ACCTAG. 
D .= DNA XOR (DO. 1, DO. 2) 
.= DNA XOR (ACCTAG, ACCTAG) 

.= TGGATC 

15.3.4 Data Management in Quantum-DNA Full Subtractor 

A full subtractor is a combinational circuit that performs subtraction of two qubits, 
one is minuend and other is subtrahend, taking into account the borrow of the previous 
adjacent lower minuend qubit. This circuit has three inputs and two outputs. The 
three inputs A, B and B. in , denote the minuend, subtrahend, and previous borrow 
respectively. The two outputs, D and B.out represent the difference and output borrows, 
respectively. To create a Full Subtractor, one OR, two AND, two OR and 2 XOR 
operational gates are required. Figure 15.9 describes the quantum-DNA circuit of 
full subtractor.



390 15 Data Management Techniques

15.3.4.1 Design Procedure of a Quantum-DNA Full Subtractor 

To design a Quantum-DNA Full Subtractor Quantum and DNA operations are used 
to operate the input qubit for their corresponding outputs. The Quantum operations 
will be used for receiving the input qubits; and the DNA operations will be used 
to produce the final output against the corresponding set of inputs. Each time, the 
Quantum-DNA Full Subtractor will receive three qubits as input. After operating in 
a certain number of Quantum operations, the qubit will be stored in Cache memory. 
To store 4 qubits, a 16-to-4 Quantum cache memory is needed. 

After getting the qubits from cache memory, it will be turned into the corre-
sponding DNA sequences using NMR relaxation room temperature probe. By using 
a room temperature probe and corresponding components of NMR relaxation, the 
excited qubit turns into ground state and produces a DNA sequence. Then the DNA 
sequence is processed through DNA operations and outputs are received. Here, 
Fig. 15.9 describes Quantum-DNA Full Subtractor using Quantum and DNA opera-
tions. 

From the Fig. 15.9, it is found that the Quantum-DNA Full Subtractor consists 
of four Quantum operations, two DNA operations and a 16-to-4 cache memory. 
Here, two AND, one XOR and one NOT Quantum operations are used in Quantum 
operation and storing qubits in Cache memory and further one XOR and one OR 
DNA operations to provide the output. 

15.3.4.2 Working Procedure 

The working procedure of the Quantum-DNA Full Subtractor is given below for each 
pattern of input qubits. Here, DNA sequence ACCTAG.= TRUE for qubit | 1 .> and 
DNA sequence TGGATC = FALSE for qubit | 0 .> are used. 

To store qubits in cache memory, 4 locations select line (A, B, C and D), one CLK 
input line, one |R/W. >| input line and 4 input qubit lines in cache memory (DI. 1, DI. 2, 
DI. 3, and DI. 4). The output from the cache memory will be DO. 0, DO. 1, DO. 2, and DO. 3

are needed. 
The working procedure of the quantum-DNA Full Subtractor within cache mem-

ory is given below for one pattern of input qubits and the outputs for different com-
binations of inputs are given in Table 15.4. Here, the inputs of cache memory from 
the quantum gates are found as follows: 

1. For inputs A, B, B.in .= 1, 1, 0, 
DI.1 .= B.in .= 0 
DI.2 .= Quantum XOR (A, B) 
.= Quantum AND (1, 1) 
.= 1 
DI.3 .= Quantum AND (NOT (XOR (A, B), B) 
.= Quantum AND (NOT (XOR (1, 1), 1) 
.= Quantum AND (NOT (0), 1)



15.3 Data Management in Quantum-DNA Circuits 391

A
n

n
ea

l 
>

60
o 

A
n

n
ea

l 
>

60
o 

Quantum Cache 
Memory 

Heat Transfer Circuit 

NMR 
Relaxation 

Quantum XOR 

Quantum AND-1 

Quantum AND-2 
Quantum 

NOT-2 

Quantum 
NOT-1 

DNA XOR 

DNA OR 

Fig. 15.9 Circuit of quantum-DNA full subtractor with cache memory 

Table 15.4 Outputs of quantum-DNA full subtractor operation 

|A0.> |A1.> |Q.> SUM Carry 

|0.> |0.> |0.> TGGATC TGGATC 

|0.> |0.> |1.> ACCTAG ACCTAG 

|0.> |1.> |0.> ACCTAG ACCTAG 

|0.> |1.> |1.> TGGATC ACCTAG 

|1.> |0.> |0.> ACCTAG TGGATC 

|1.> |0.> |1.> TGGATC TGGATC 

|1.> |1.> |0.> TGGATC TGGATC 

|1.> |1.> |1.> ACCTAG ACCTAG 

.= Quantum AND (1, 1) 

.= 1 
DI.4 .= Quantum AND (NOT (A), B) 
.= Quantum AND (NOT (1), 1) 
.= Quantum AND (0, 1) 
.= 0



392 15 Data Management Techniques

Output of Quantum cache memory will be converted into DNA sequence using NMR 
relaxation at room temperature. For qubit |0.> DNA sequence is TGGATC and for 
|1.> DNA sequence is ACCTAG. 

B.out .= DNA OR (DO. 2, DO. 3) 
.= DNA OR (ACCTAG, TGGATC) 
.= ACCTAG 
D .= DNA XOR (DO. 0, DO. 1) 
.= DNA XOR (ACCTAG, ACCTAG) 

.= TGGATC 

15.3.5 Data Management in Quantum-DNA Three-Qubit 
Parity Bit Checker 

A circuit that checks the parity in the receiver is called a Parity Checker. A com-
bined circuits or device of parity generators and parity checkers are commonly 
used in digital systems to detect the single-bit errors in the transmitted data. To 
create a three-qubit even parity qubit checker, three XOR operations are required. 
Figure 15.10 describes the digital and quantum circuit of a three-qubit even par-
ity qubit checker. A three-qubit even parity qubit checker receives four inputs and 
produces one output containing “E”. 

Q
ua

nt
um

 C
ac

he
 

M
em

or
y 

Quantum XOR 

Quantum XOR 

DNA XOR 

NMR 
Relaxation 

A
nn

ea
l 

>6
0

o 

Fig. 15.10 Circuit of quantum-DNA three-qubit even parity qubit checker with cache memory



15.3 Data Management in Quantum-DNA Circuits 393

15.3.5.1 Design Procedure 

To design a quantum-DNA three-qubit even parity qubit checker, quantum operations 
and DNA operations are used to operate the input qubit for their corresponding 
outputs. The quantum operations will be used for receiving the input qubits and the 
DNA operations will be used to produce the final output against the corresponding 
set of inputs. Each time, the quantum-DNA three-qubit even parity qubit checker 
will receive four qubits as input. After operating in a certain number of quantum 
operations, the qubit will be stored in cache memory. To store 2 qubits, a 4-to-2 
quantum cache memory is needed. 

After getting the qubits from cache memory, it will be turned into the corre-
sponding DNA sequence using NMR relaxation room temperature probe. By using 
a room temperature probe and corresponding components of NMR relaxation, the 
excited qubit turns into a ground state and produces a DNA sequence. Then the 
DNA sequence is processed through DNA operations and outputs are received. Here, 
Fig. 15.10 describes quantum-DNA three-qubit even parity qubit checker using quan-
tum operations and DNA operations. 

From Fig. 15.10, it is found that the quantum-DNA three-qubit even parity qubit 
checker consists of two quantum operations, one DNA operations and a 4-to-2 cache 
memory. Here, two quantum XOR operations are used in quantum operation and 
stored qubits in cache memory and one DNA XOR operation is needed to provide 
the output. 

15.3.5.2 Working Procedure 

The working procedure of the quantum-DNA three-qubit even parity qubit checker 
is given below for each pattern of input qubits. Here, DNA sequence ACCTAG . =
TRUE for qubit | 1 .> and DNA sequence TGGATC = FALSE for qubit | 0 .> are 
used. 

To store qubits in cache memory, 2 locations select line (A and B), one CLK input 
line, one |R/W. >| input line and 2-input qubit lines in cache memory (DI. 1, DI. 2, DI. 3, 
and DI. 4). The output from the cache memory will be DO. 0 and DO. 1 are needed. 

The working procedure of the quantum-DNA 3-bit even parity bit checker within 
cache memory is given below for one pattern of input qubits. Here, the inputs of 
cache memory from the quantum gates are found as follows: 

1. For inputs A, B, C and P = 1, 1, 0, 1 DI.0 .= Quantum XOR (A, B) 
.= Quantum XOR (1, 1) 
.= 0 
DI.1 .= Quantum XOR (C, P) 
.= Quantum XOR (0, 1) 
.= 1



394 15 Data Management Techniques

The output of quantum cache memory will be converted into DNA sequence using 
NMR relaxation at room temperature. For qubit |0. >DNA sequence is TGGATC and 
for |1.> DNA sequence is ACCTAG. 

Output .= DNA XOR (DO. 0, DO. 1) 
.= DNA XOR (TGGATC, ACCTAG) 

.= ACCTAG 

15.4 Data Management in DNA-Quantum Circuits 

In a DNA-quantum computing system, input will be received in DNA sequences and 
after performing a certain number of DNA operations, these DNA sequences will 
be turned into qubits by NMR process. Before entering into NMR process they will 
stay for a short time in DNA cache memory. 

15.4.1 DNA Cache Memory to Control DNA to Quantum 
Data Flow 

An intermediary system where the output data from the DNA system will be stored 
and retrieved for further processes. Figure 15.11 shows a cache memory cell to store 
one DNA sequence. 

A
nn

ea
l 

>6
0

o 

A
nn

ea
l 

>6
0

o 

A
nn

ea
l 

>6
0

o 

A
nn

ea
l 

>6
0

o 

A
nn

ea
l 

>6
0

o 

A
nn

ea
l 

>6
0

o 

A
nn

ea
l 

>6
0

o 

A
nn

ea
l 

>6
0

o 

A
nn

ea
l 

>6
0

o 

A
nn

ea
l 

>6
0

o A
nn

ea
l 

>6
0

o 

A
nn

ea
l 

>6
0

o 

DNA NAND 
DNA NAND 

DNA NAND 
DNA NAND 

DNA NOT 

DNA NOT 

DNA NOT 

DNA NOT 

DNA NAND 

DNA NAND 

DNA NAND 
DNA AND 

Fig. 15.11 The circuit diagram of one-molecular sequence DNA cache memory



15.4 Data Management in DNA-Quantum Circuits 395

An
ne

al
 

>6
0o

 
An

ne
al

 
>6

0o
 

An
ne

al
 

>6
0o

 

An
ne

al
 

>6
0o

 

An
ne

al
 

>6
0o

 

An
ne

al
 

>6
0o

 

An
ne

al
 

>6
0o

 

An
ne

al
 

>6
0o

 

An
ne

al
 

>6
0o

 

An
ne

al
 

>6
0o

 

An
ne

al
 

>6
0o

 

An
ne

al
 

>6
0o

 DNA NAND 

DNA NAND 

DNA NAND 

DNA NAND 

DNA NAND 

DNA NAND 

DNA NAND 

DNA NOT 

DNA NOT 
DNA AND 

DNA NOT 

DNA NOT 

Fig. 15.12 The circuit diagram of one-molecular sequence DNA cache memory is divided into 
four blocks 

Fig. 15.13 The block architecture of one-molecular DNA cache memory 

15.4.1.1 Design and Working Procedures of Cache Memory RAM Cell 

RAM cell has three inputs and one output. First R/W’ and select line go through the 
AND gate. Inverted R/W’ and select line go through another AND gate. This AND 
gate output and an input bit will go to D flip-flop. The output of the D flip-flop AND 
with the first AND gate to produce output. 

Using this one-bit DNA cache memory cell, DNA cache memory circuits can 
be constructed to store more DNA information. To do that easily, let’s first divide 
the one-molecular DNA cache memory into four blocks. In the designed Fig. 15.12, 
where the one-molecular DNA cache memory divides into four blocks. The block 
diagram of one-molecular DNA cache memory is shown in Fig. 15.13. 

Now, to construct a 4-to-2 DNA cache memory 8 one-molecular sequence DNA 
cache memory cells are required. Therefore, it can be expressed that the block archi-
tecture of one-bit sequence DNA cache memory is in a shorter form than Fig. 15.14, 
which will make the architecture of 4-to-2 DNA cache memory more straightfor-
ward. Based on Fig. 15.14, a one-molecular sequence DNA cache memory cell is 
depicted below.



396 15 Data Management Techniques

Fig. 15.14 DNA one-molecular cache memory cell 

Here, Block 1 refers to the Block Architecture of two DNA NAND and two DNA 
NOT operations, Block 2 refers to the Block Architecture of one DNA AND and one 
DNA NOT operation, Block 3 refers to the Block Architecture of four DNA NAND 
operations, and Block 4 refers to the Block Architecture of one DNA NAND and 
one DNA NOT operation, and all of the block components are connected in a way 
shown in Figs. 15.13 and 15.14. 

15.4.1.2 Design and Working Procedures of Cache Memory Circuit 

Figure 15.15 shows a 4-to-2 DNA cache memory where 2-molecular sequence data 
can be stored and retrieved when necessary. From the 4-to-2 cache memory circuit 
diagram it is seen that, a 2-to-4 DNA decoder, eight DNA RAM cells, and two DNA 
OR operations are needed to be designed. Each DNA RAM cell has three inputs 
and one output. Three inputs are the select, R/W’, and one input molecule. A 2-to-4 
decoder’s outputs are used as select input for RAM cells. A DNA OR operation is 
used to OR all the RAM cells output those are connected to the DI. 0 line and perform 
DO. 0 as cache memory output. Another OR operation is used to OR all RAM cells 
output those are connected to the DI. 1 line and perform DO. 1 as cache memory output. 

The circuit diagram of a DNA 2-to-4 decoder operation is shown in Fig. 15.16. 
From Fig. 15.16, it is found that to construct a DNA 2-to-4 decoder, six DNA NOT 
and four DNA NAND operations are needed. The outputs of the decoder O. 0, O. 1, O. 2, 
and O. 3 from equations are given as follows. 

. O0 = A1 A0

. O1 = A1 A0

. O2 = A1 A0

. O3 = A1 A0

Therefore, the circuit diagram for the DNA 4-to-2 cache memory has been con-
structed. Similarly, the circuit diagram for higher-order DNA cache memory can be 
constructed using the higher-order DNA decoders and more DNA one-molecular



15.4 Data Management in DNA-Quantum Circuits 397

Anneal 
>60 o 

Anneal 

>60 o 

D
N

A
 O

R 

D
N

A
 O

R 

Fig. 15.15 The circuit diagram of DNA 4-to-2 cache memory 

sequence cache memory cells. The circuits will be larger with the increase of their 
storage capacity. 

It is not possible to use this massive circuit of DNA cache memory in the design, 
rather a block diagram will be used instead of the actual circuit. The block diagram 
of the DNA cache memory is shown in Fig. 15.17. 

15.4.2 DNA-Quantum Full-Adder Operation 

The data conversion circuit has been constructed to convert the DNA sequences 
to the quantum qubits, and store them to the DNA cache memory. A heat transfer 
circuit doesn’t need to develop because the heat transfer circuit does not belong to 
the DNA system. So, now it is required to construct the full-adder circuit in DNA-
quantum cross-platform. The architecture of the DNA-quantum full adder is shown 
in Fig. 15.18.



398 15 Data Management Techniques

A
nn

ea
l 

>6
0 

o 

A
nn

ea
l 

>6
0 

o 

A
nn

ea
l 

>6
0 

o 

A
nn

ea
l 

>6
0 

o 

A
nn

ea
l 

>6
0 

o 

A
nn

ea
l 

>6
0 

o 

A
nn

ea
l 

>6
0 

o 

A
nn

ea
l 

>6
0 

o 

A
nn

ea
l 

>6
0 

o 

A
nn

ea
l 

>6
0 

o 

Fig. 15.16 DNA 2-to-4 decoder operation 

So, the above figure is the absolute circuit diagram of the DNA-quantum full-
adder. This operational diagram will be able to perform the full-adder operations in 
the DNA-quantum cross-platform.



15.4 Data Management in DNA-Quantum Circuits 399

Fig. 15.17 The block diagram of DNA cache memory 

Lorem ipsum 

Lorem ipsumLorem ipsum 
Lorem ipsum ttttttttttt 

ttttttttt 

Lorem ipsum 
Lorem ipsumLorem ipsum 

A
nn

ea
l 

>
60

o
A

nn
ea

l 
>

60
o 

A
nn

ea
l 

>
60

o 

A
nn

ea
l 

>
60

o 

A
nn

ea
l 

>
60

o 

DNA XOR & NAND 
     Operations 

DNA XOR & NOT 
     Operations 

Fig. 15.18 The final circuit diagram of the DNA-quantum full adder



400 15 Data Management Techniques

15.4.2.1 Working Procedure of DNA-Quantum Full-Adder Operation 

This operation requires 3-input qubits. Thus, there will be 8 patterns of inputs. Con-
sider some of those input patterns, and have a look at how they behave in the designed 
circuit in Fig. 15.18. 

1. Consider the inputs .A1, .B1, .C0 = TGGATC, 

(a) The DNA XOR will get inputs .A1 = TGGATC, and.B1 = TGGATC. There-
fore it will produce output TGGATC. And this output will be the input of the 
first DNA AND operation and also will be stored in the DNA cache memory. 
The value of .C0 will also be stored in the cache memory. 

(b) The first DNA AND will get input TGGATC from both .C0 and from Step 
a. Thus, it will also produce TGGATC as output which will be stored in the 
DNA cache memory. 

(c) The .2nd DNA AND will get input TGGATC from both .A1 and .B1. Thus, it 
will also produce TGGATC as output which will be stored in the DNA cache 
memory. 

(d) The NMR will get the DNA sequences from the DNA cache memory and 
will convert them to the equivalent quantum bits. As all the DNA system’s 
outputs are TGGATC, they all will be converted into |0.> and will pass to the 
Quantum systems. 

(e) Therefore, the Quantum XOR will receive input |0.> from both the output of 
Step a and the value of.C0. Thus, it will produce the sum output qubit as |0. >. 

(f) And the Quantum OR will get also |0.> from both the output of Step b and 
Step c. Therefore it will also generate |0.> as the carry output qubit. 

2. Consider the inputs .A1 = .ACCTAG, .B1 =, and .C0 = TGGATC, 

(a) The DNA XOR will get inputs .A1 = ACCTAG, and.B1 = ACCTAG. There-
fore it will produce output TGGATC. And this output will be the input of the 
first DNA AND operation and also will be stored in the DNA cache memory. 
The value of .C0 will also be stored in the cache memory. 

(b) The first DNA AND will get input TGGATC from both .C0 and from Step 
a. Thus, it will also produce TGGATC as output which will be stored in the 
DNA cache memory. 

(c) The .2nd DNA AND will get input .ACCTAG from both .A1 and .B1. Thus, it  
will also produce.ACCTAG as output which will be stored in the DNA cache 
memory. 

(d) The NMR will get the DNA sequences from the DNA cache memory and 
will convert them to the equivalent quantum-bits. As the outputs from Steps 
a and b are TGGATC, they all will be converted into |0.> and will pass to the 
Quantum Systems. The value of C. 0 will also be converted as qubit |0. >. And  
the output of Step c will be converted as qubit |1. >. 

(e) Therefore, the Quantum XOR will receive input |0.> from both the output of 
Step a and the value of C. 0. Thus, it will produce the sum output qubit as |0. >.



15.5 Applications 401

(f) And the Quantum OR will get also |0.> from the output of Step b and |1. >
from the output of Step (c). Therefore it will generate |1. > as the carry output 
qubit. 

3. Consider the inputs as .A1 = .ACCTAG, .B1= ACCTAG, and .C0 = ACCTAG, 

(a) The DNA XOR will get inputs .A1 = ACCTAG, and.B1 = ACCTAG. There-
fore it will produce output TGGATC. And this output will be the input of the 
first DNA AND operation and also will be stored in the DNA cache memory. 
The value of .C0 will also be stored in the cache memory. 

(b) The first DNA AND will get input ACCTAG from .C0 and TGGATC from 
Step a. Thus, it will also produce TGGATC as output which will be stored in 
the DNA cache memory. 

(c) The .2nd DNA AND will get input .ACCTAG from both A1 and .B1. Thus, it 
will also produce.ACCTAG as output which will be stored in the DNA cache 
memory. 

(d) The NMR will get the DNA sequences from the DNA cache memory and 
will convert them to the equivalent quantum bits. As the outputs from Steps 
a and b are TGGATC, they all will be converted into |0.> and will pass to the 
Quantum systems. The value of C. 0 will be converted as qubit |1. >. And  the  
output of Step c will be converted as qubit |1. >. 

(e) Therefore, the Quantum XOR will receive input |0.> from the output of Step 
a and |1.> from the value of C. 0. Thus, it will produce the sum output qubit as 
|1. >. 

(f) And the Quantum OR will get also |0.> from the output of Step b and |1. >
from the output of Step c. Therefore it will generate |1.> as the carry output 
qubit. 

Therefore, the designed architecture for the DNA-Quantum full-adder runs quite 
efficiently. 

15.5 Applications 

This section discusses several real-world applications of DNA and quantum opera-
tions, including how they are used and how they outperform traditional computing 
systems. Classical computing systems may fail in certain scenarios; however, quan-
tum and DNA computing systems can demonstrate their capacity. 

Logistics Optimization: A wide range of companies will be able to improve their 
logistics and scheduling procedures related to supply-chain management to improved 
data analysis and sophisticated modeling. The operating models must calculate and 
recalculate ideal routes for traffic management, fleet operations, air traffic control,



402 15 Data Management Techniques

shipping, and allocation on a constant basis, which may have a significant impact on 
applications. Normally, traditional computing is employed to complete these jobs; 
however, some of them may become too complex for an ideal computer solution, 
whereas a quantum technique may be able to complete them. Quantum annealing 
and universal quantum computers are two common quantum techniques that can be 
utilized to solve such challenges. Quantum annealing is a cutting-edge optimization 
technology that promises to outperform regular computers. Universal quantum com-
puters, on the other hand, are capable of addressing any form of the computational 
issue and are not yet commercially available. 

15.6 Summary 

Quantum-DNA computing and DNA-quantum computing are new ways of com-
putings in modern science and technology which are introduced here in this book 
for the first time. In this way of computing the system needs a cache memory. In 
quantum-DNA computing, quantum cache memory is needed to store qubits which 
are so fast and cannot enter directly to the conversion circuits. In the DNA-quantum 
cache memory, DNA cache memory is needed to perform smooth computations. 
This chapter has presented the details of quantum cache memories and DNA cache 
memories and showed the working processes during computations.



Concluding Remarks 

In this book, a novel concept called computation using quantum biology (QB) is 
presented. Quantum biology is a burgeoning interdisciplinary field that explores 
how quantum mechanical principles influence biological processes that are not fully 
explained by classical physics. It focuses on how quantum phenomena, like quan-
tum coherence and tunneling, can enhance or regulate biological functions. Here, a 
quantum biocomputer construction effort has been made. In terms of security, paral-
lel computing power, and computation speed, quantum computers excel. Quantum 
computing, an intriguing idea in recent years, can solve many insoluble classical 
computer issues. Because of its parallel processing, enormous storage capacity, and 
capacity for nano-level computation, DNA (Deoxyribose Nucleic Acid) computing 
stands out from conventional computer systems. DNA computing or biocomputing or 
biological computing requires less power than conventional computer systems. Logic 
gates in DNA computing offer special qualities including stability and reusability. 

The DNA molecule’s properties help to induce quantum phenomena such as super-
position, tunneling, coherence, and entanglement. The novel computer concepts 
introduced in this book, such as quantum-DNA computing or quantum biocom-
puting or quantum biological computing which explores the potential for biological 
systems to perform quantum computations, or the use of biological materials and pro-
cesses to build quantum computers. It’s a multidisciplinary field at the intersection 
of quantum physics, biology, and computer science and DNA-quantum computing 
or bioquantum computing or biological quantum computing which would instead 
involve quantum states (like spin states, electronic states) in biological entities. If we 
consider the brain as a quantum computer argument: the brain (if quantum) would be 
an analog, highly parallel processor, possibly leveraging quantum principles that we 
don’t utilize yet. These two computing systems combine the advantages of quantum 
physics with molecular biology. 

NMR is necessary when building a qubit out of a DNA sequence, and it can be 
done at two different temperatures: 0 Kelvin and room temperature. In this book, 
quantum-DNA and DNA-quantum Nanoprocessors are built for these two temper-
atures. To obtain the appropriate DNA sequence, the qubit is relaxed using RNR. 
While DNA computing uses DNA sequences as inputs, quantum computing uses 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer 
Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9 

403 

https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9


404 Concluding Remarks 

qubits to carry out computations. In quantum-DNA computing, a buffer is employed 
to match the speed of quantum cache memory. The qubits needed to transfer it to 
DNA circuits are present in cache memory. The storage of data that can be resolved 
by quantum-DNA computing is a restriction of quantum computing. DNA sequences 
are capable of securely storing a lot of data. For this reason, quantum-DNA com-
puting is useful. Additionally, the processing of data by DNA processes generates 
heat, and all operations carried out by quantum systems do the same. The terms 
“DNA-quantum computing” and “quantum-DNA computing” facilitate the transfer 
of generated heat from quantum computing to DNA computing. 

In Quantum biocomputing, which refers to quantum computing, DNA computing, 
DNA-quantum computing, and quantum-DNA computing, all arithmetic operations, 
combinational circuits, and speed of the operations, applications, and produced tem-
perature are explained in this book. 



References 

1. G.A. Barbosa, Quantum half-adder. Phys. Rev. A 73(5), 052321 (2006) 
2. L. Diósi, A Short Course in Quantum Information Theory: An Approach From Theoretical 

Physics, vol. 827 (Springer, Berlin, 2011) 
3. N. Isailovic, Y. Patel, M. Whitney, J. Kubiatowicz, Interconnection networks for scalable quan-

tum computers, in 33rd International Symposium on Computer Architecture (ISCA’06) (IEEE, 
2006), pp. 366–377 

4. L.B. Levitin, T. Toffoli, Z. Walton, Operation time of quantum gates (2022). arXiv:quant-
ph/0210076 

5. S.T. Marella, H.S.K. Parisa, Introduction to quantum computing, in Quantum Computing and 
Communications (IntechOpen, 2020) 

6. T.S. Metodi, D.D. Thaker, A.W. Cross, F.T. Chong, I.L. Chuang, A quantum logic array microar-
chitecture: scalable quantum data movement and computation, in 38th Annual IEEE/ACM 
International Symposium on Microarchitecture (MICRO’05) (IEEE, 2005), p. 12 

7. M. Mohammadi, M. Eshghi, Behavioral description of quantum v and v+ gates to design 
quantum logic circuits, in 2008 5th International Multi-Conference on Systems, Signals and 
Devices (IEEE, 2008), pp. 1–5 

8. M. Morrison, Design of a reversible ALU based on novel reversible logic structures (University 
of South Florida, 2012) 

9. A. Muthukrishnan, Classical and quantum logic gates: an introduction to quantum computing 
quantum information seminar (1999) 

10. D.D. Thaker, T.S. Metodi, A.W. Cross, I.L. Chuang, F.T. Chong, Quantum memory hierarchies: 
efficient designs to match available parallelism in quantum computing, in 33rd International 
Symposium on Computer Architecture (ISCA’06) (IEEE, 2006), pp. 378–390 

11. H. Thapliyal, N. Ranganathan, Design of reversible sequential circuits optimizing quantum 
cost, delay, and garbage outputs. ACM J. Emerg. Technol. Comput. Syst. (JETC) 6(4), 1–31 
(2010) 

12. S. Arunachalam, V. Gheorghiu, T. Jochym-O’Connor, M. Mosca, P.V. Srinivasan, On the robust-
ness of bucket brigade quantum ram. New J. Phys. 17(12), 123010 (2015) 

13. M. Blencowe, Quantum ram. Nature 468(7320), 44–45 (2010) 
14. E. Blum, M. Castillo-Martin, M. Rosenberg, Survey on the security of the quantum rom (2019) 
15. E.S. Boyden, Quantum computation: theory and implementation. Ph.D. thesis, Massachusetts 

Institute of Technology, Department of Physics; and (S. B. and S. M ..., 1999) 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer 
Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9 

405 

http://arxiv.org/abs/quant-ph/0210076
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9


406 References 

16. D. Deutsch, R. Jozsa, Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. 
Ser. A: Math. Phys. Sci. 439(1907), 553–558 (1992) 

17. V. Giovannetti, S. Lloyd, L. Maccone, Architectures for a quantum random access memory. 
Phys. Rev. A 78(5), 052310 (2008) 

18. J.R. Goodman, Using cache memory to reduce processor-memory traffic, in Proceedings of 
the 10th Annual International Symposium on Computer Architecture (1983), pp. 124–131 

19. M.M. Mano, Digital Logic and Computer Design (Pearson Education India, 2017) 
20. P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Pro-

ceedings 35th Annual Symposium on Foundations of Computer Science (IEEE, 1994), pp. 
124–134 

21. B.C. Travaglione, M.A. Nielsen, H.M. Wiseman, A. Ambainis, Rom-based computation: quan-
tum versus classical (2001). arXiv:quant-ph/0109016 

22. L.M. Adleman, Molecular computation of solutions to combinatorial problems. Science 
266(5187), 1021–1024 (1994) 

23. K.J. Breslauer, R. Frank, H. Blöcker, L.A. Marky, Predicting DNA duplex stability from the 
base sequence. Proc. Natl. Acad. Sci. 83(11), 3746–3750 (1986) 

24. J. Watada, DNA computing and its application, in Computational Intelligence: A Compendium 
(Springer, Berlin, 2008), pp.1065–1089 

25. X. Zheng, J. Yang, C. Zhou, C. Zhang, Q. Zhang, X. Wei, Allosteric Dnazyme-based DNA 
logic circuit: operations and dynamic analysis. Nucleic Acids Res. 47(3), 1097–1109 (2019) 

26. R.E. March, Quadrupole ion traps. Mass Spectrom. Rev. 28(6), 961–989 (2009) 
27. A. Steane, Quantum computing. Rep. Prog. Phys. 61(2), 117 (1998) 
28. J. Antony, D.M. Medvedev, A.A. Stuchebrukhov, Theoretical study of electron transfer between 

the photolyase catalytic cofactor FADH-and DNA thymine dimer. J. Am. Chem. Soc. 122(6), 
1057–1065 (2000) 

29. S.C. Benjamin, N.F. Johnson, Entangled electronic states in multiple-quantum-dot systems. 
Phys. Rev. B 51(20), 14733 (1995) 

30. D. Bouwmeester, A. Zeilinger, The physics of quantum information: basic concepts, in The 
Physics of Quantum Information (Springer, Berlin, 2000), pp.1–14 

31. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, DNA-templated assembly and electrode attach-
ment of a conducting silver wire. Nature 391(6669), 775–778 (1998) 

32. J. Chen, E. Antipov, B. Lemieux, W. Cedeño, D.H. Wood, In vitro selection for a max 1s DNA 
genetic algorithm. DNA Based Comput. V 23–37 (1999) 

33. J.L. Coffer, S.R. Bigham, X. Li, R.F. Pinizzotto, Y.G. Rho, R.M. Pirtle, I.L. Pirtle, Dictation of 
the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA. Appl. Phys. 
Lett. 69(25), 3851–3853 (1996) 

34. D. Deutsch, Quantum theory, the church-turing principle and the universal quantum computer. 
Proc. R. Soc. Lond. A. Math. Phys. Sci. 400(1818), 97–117 (1985) 

35. N.A. Gershenfeld, I.L. Chuang, Bulk spin-resonance quantum computation. Science 
275(5298), 350–356 (1997) 

36. A. Kamaraj, P. Marichamy, Design and implementation of arithmetic and logic unit (ALU) using 
novel reversible gates in quantum cellular automata, in 2017 4th International Conference on 
Advanced Computing and Communication Systems (ICACCS) (IEEE, 2017), pp. 1–8 

37. Y. Kanamori, S.-M. Yoo, Quantum computing: principles and applications. J. Int. Technol. Inf. 
Manag. 29(2), 43–71 (2020) 

38. J.D. McCalpin, IEEE computer society technical committee on computer architecture (TCCA) 
newsletter (1995) 

39. V. Scarani, M. Ziman, P. Štelmachovič, N. Gisin, V. Bužek, Thermalizing quantum machines: 
dissipation and entanglement. Phys. Rev. Lett. 88(9), 097905 (2002) 

40. F. Schmidt et al., Realization of the Cirac-Zoller controlled-not quantum gate. Nature 422, 
408–11 (2003) 

41. M.K. Thomsen, R. Glück, H.B. Axelsen, Reversible arithmetic logic unit for quantum arith-
metic. J. Phys. A: Math. Theor. 43(38), 382002 (2010) 

http://arxiv.org/abs/quant-ph/0109016


References 407 

42. M. Arndt, T. Juffmann, V. Vedral, Quantum physics meets biology. HFSP J 3(6), 386–400 
(2009) 

43. M. Asano, I. Basieva, A. Khrennikov, M. Ohya, Y. Tanaka, I. Yamato, Quantum information 
biology: from information interpretation of quantum mechanics to applications in molecular 
biology and cognitive psychology. Found. Phys. 45(10), 1362–1378 (2015) 

44. G. Balasubramanian, I.Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Woj-
cik, P.R. Hemmer, A. Krueger et al., Nanoscale magnetic sensing with an individual electronic 
spin in diamond. Nat Nanotechnol 455, 648–52 (2008) 

45. C. Chatgilialoglu, L.A. Eriksson, M.G. Krokidis, A. Masi, S. Wang, R. Zhang, Oxygen depen-
dent purine lesions in double-stranded oligodeoxynucleotides: kinetic and computational stud-
ies highlight the mechanism for 5, 8-cyclopurine formation. J. Am. Chem. Soc. 142(12), 5825– 
5833 (2020) 

46. H. Chen, S. Krishnamachari, J. Guo, L. Yao, P. Murugan, C.J. Weight, R.J. Turesky, Quantitation 
of lipid peroxidation product DNA adducts in human prostate by tandem mass spectrometry: 
a method that mitigates artifacts. Chem. Res. Toxicol. 32(9), 1850–1862 

47. H.B. Gray, J.R. Winkler, Electron tunneling through proteins. Q. Rev. Biophys. 36(3), 341–372 
(2003) 

48. M.C. Jecklin, D. Touboul, C. Bovet, A. Wortmann, R. Zenobi, Which electrospray-based ion-
ization method best reflects protein-ligand interactions found in solution? a comparison of ESI, 
nanoESI, and ESSI for the determination of dissociation constants with mass spectrometry. J. 
Am. Soc. Mass Spectrom. 19(3), 332–343 (2008) 

49. Y.N. Lambert, C. Li, G. Chen, F. Nori, Quantum biology. Nat. Phys. 9, 10–18 (2013) 
50. A. Marais, B. Adams, A.K. Ringsmuth, M. Ferretti, J.M. Gruber, R. Hendrikx, M. Schuld, S.L. 

Smith, I. Sinayskiy, T.P.J. Krüger et al., The future of quantum biology. J. R. Soc. Interface 
15(148), 20180640 (2018) 

51. J. McFadden, J. Al-Khalili, The origins of quantum biology. Proc. R. Soc. A 474(2220), 
20180674 (2018) 

52. A.A. Stuchebrukhov, Long-distance electron tunneling in proteins: a new challenge for time-
resolved spectroscopy. Laser Phys. 20(1), 125–138 (2010) 

53. Y. Wang, Q. Zhang, Y. Wang, Tandem mass spectrometry for the determination of the sites of 
DNA interstrand cross-link. J. Am. Soc. Mass Spectrom. 15(11), 1565–1571 (2004) 

54. T.-C. Yena, Y.-C. Cheng, Electronic coherence effects in photosynthetic light harvesting. Pro-
cedia Chem. 3(1), 211–221 (2011) 

55. E.E. Bessette, S.D. Spivack, A.K. Goodenough, T. Wang, S. Pinto, F.F. Kadlubar, R.J. Turesky 
(2010) Identification of carcinogen DNA adducts in human saliva by linear quadrupole ion 
trap/multistage tandem mass spectrometry. Chem. Res. Toxicol. 23(7), 1234–1244 (2010) 

56. S.A. El-Seoud, R. Mohamed, S. Ghoneimy, DNA computing: challenges and application. Int. 
J. Interact. Mob. Technol. 11(2) (2017) 

57. V. Gabelica, T. Tabarin, R. Antoine, F. Rosu, I. Compagnon, M. Broyer, E. De Pauw, P. Dugourd, 
Electron photodetachment dissociation of DNA polyanions in a quadrupole ion trap mass 
spectrometer. Anal. Chem. 78(18), 6564–6572 (2006) 

58. P.P. Gariaev, P.J. Marcer, K.A. Leonova-Gariaeva, U. Kaempf, V.D. Artjukh, DNA as basis for 
quantum biocomputer. DNA Decipher J. 1(1), 025–046 (2011) 

59. H. Häffner, C.F. Roos, R. Blatt, Quantum computing with trapped ions. Phys. Rep. 469(4), 
155–203 (2008) 

60. A.D. Córcoles, A. Kandala, A. Javadi-Abhari, D.T. Mcclure, A.W. Cross, K. Temme, P.D. 
Nation, M. Steffen, J.M. Gambetta, Challenges and opportunities of near-term quantum com-
puting systems. Proc. IEEE 10 (2019) 

61. R.E. March, An introduction to quadrupole ion trap mass spectrometry. J. Mass Spectrom. 
32(4), 351–369 (1997) 

62. V. Nebendahl, H. Häffner, C.F. Roos, Optimal control of entangling operations for trapped-ion 
quantum computing. Phys. Rev. A 79(1), 012312 (2009) 

63. A.A. Tulub, V.E. Stefanov, Triplet-singlet spin communication between DNA nucleotides 
serves the basis for quantum computing. Chem. Phys. Lett. 436(1–3), 258–262 (2007) 



408 References 

64. C. Xin, Shor’s quantum algorithm: large number factoring and period finding 
65. D.R. Alcoba, R.C. Bochicchio, L. Lain, A. Torre, On the measure of electron correlation and 

entanglement in quantum chemistry based on the cumulant of the second-order reduced density 
matrix. J. Chem. Phys. 133(14), 144104 (2010) 

66. L. Diósi, Qubit thermodynamics, in A Short Course in Quantum Information Theory (Springer, 
Berlin, 2011), pp.123–133 

67. S.M. Freier, R. Kierzek, J.A. Jaeger, N. Sugimoto, M.H. Caruthers, T. Neilson, D.H. Turner, 
Improved free-energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad. 
Sci. 83(24), 9373–9377 (1986) 

68. L.A. Marky, K.J. Breslauer, Calculating thermodynamic data for transitions of any molecularity 
from equilibrium melting curves. Biopolym.: Orig. Res. Biomol. 26(9), 1601–1620 (1987) 

69. D.H. Mathews, J. Sabina, M. Zuker, D.H. Turner, Expanded sequence dependence of thermo-
dynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288(5), 
911–940 (1999) 

70. J. SantaLucia Jr., A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-
neighbor thermodynamics. Proc. Natl. Acad. Sci. 95(4), 1460–1465 (1998) 

71. T.S. Metodi, F.T. Chong, Quantum computing for computer architects. Synth. Lect. Comput. 
Arch. 1(1), 1–154 (2006) 

72. C. Monroe, R. Raussendorf, A. Ruthven, K.R. Brown, P. Maunz, L.-M. Duan, J. Kim, Large-
scale modular quantum-computer architecture with atomic memory and photonic interconnects. 
Phys. Rev. A 89(2), 022317 (2014) 

73. M. Whitney, N. Isailovic, Y. Patel, J. Kubiatowicz, Automated generation of layout and con-
trol for quantum circuits, in Proceedings of the 4th International Conference on Computing 
Frontiers (2007), pp. 83–94 

74. J. Anders, D.K.L. Oi, E. Kashefi, D.E. Browne, E. Andersson, Ancilla-driven universal quantum 
computation. Phys. Rev. A 82(2), 020301 (2010) 

75. S. Anferova, V. Anferov, M. Adams, P. Blümler, N. Routley, K. Hailu, K. Kupferschläger, 
M.J.D. Mallett, G. Schroeder, S. Sharma, et al., Construction of a NMR-mouse with short dead 
time. Concepts Magn. Reson.: Educ. J. 15(1), 15–25 (2002) 

76. D. Auguin, V. Catherinot, T.E. Malliavin, J.L. Pons, M.A. Delsuc, Superposition of chemical 
shifts in NMR spectra can be overcome to determine automatically the structure of a protein. 
Spectroscopy 17(2–3), 559–568 (2003) 

77. F. Hobo, M. Takahashi, H. Maeda, S33 NMR cryogenic probe for taurine detection. Rev. Sci. 
Instrum. 80(3), 036106 (2009) 

78. A.M. Iliyasu, P.Q. Le, F. Dong, K. Hirota, A framework for representing and producing movies 
on quantum computers. Int. J. Quantum Inf. 9(06), 1459–1497 (2011) 

79. J.A. Jones, Quantum computing and nuclear magnetic resonance. Phys. Chem. Commun. 4(11), 
49–56 (2001) 

80. V.D. Kodibagkar, M.S. Conradi, Remote tuning of NMR probe circuits. J. Magn. Reson. 144(1), 
53–57 (2000) 

81. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum com-
puters. Nature 464(7285), 45–53 (2010) 

82. A. Marin, T.E. Malliavin, P. Nicolas, M.-A. Delsuc, From NMR chemical shifts to amino acid 
types: investigation of the predictive power carried by nuclei. J. Biomol. NMR 30(1), 47–60 
(2004) 

83. R. Marx, A.F. Fahmy, J.M. Myers, W. Bermel, S.J. Glaser, Approaching five-bit NMR quantum 
computing. Phys. Rev. A 62(1), 012310 (2000) 

84. Y. Takahashi, S. Tani, Power of uninitialized qubits in shallow quantum circuits. Theoret. 
Comput. Sci. 851, 129–153 (2021) 

85. C.M. Tesch, R. de Vivie-Riedle, Quantum computation with vibrationally excited molecules. 
Phys. Rev. Lett. 89(15), 157901 (2002) 

86. Q. Wei, S. Kais, B. Friedrich, D. Herschbach, Entanglement of polar molecules in pendular 
states. J. Chem. Phys. 134(12), 124107 (2011) 



References 409 

87. G. Werth, Principles of ion traps, in Trapped Charged Particles and Fundamental Interactions 
(Springer, Berlin, 2008), pp.1–37 

88. S.S. Zalesskiy, E. Danieli, B. Blumich, V.P. Ananikov, Miniaturization of NMR systems: desk-
top spectrometers, microcoil spectroscopy, and “NMR on a chipâŁž for chemistry, biochem-
istry, and industry. Chem. Rev. 114(11), 5641–5694 (2014) 

89. G. Chatterjee, N. Dalchau, R.A. Muscat, A. Phillips, G. Seelig, A spatially localized architecture 
for fast and modular DNA computing. Nat. Nanotechnol. 12(9), 920–927 (2017) 

90. J. Elbaz, O. Lioubashevski, F. Wang, F. Remacle, R.D. Levine, I. Willner, DNA computing 
circuits using libraries of Dnazyme subunits. Nat. Nanotechnol. 5(6), 417–422 (2010) 

91. M. Hirvensalo, Quantum Computing (Springer Science & Business Media, 2003) 
92. V. Mavroeidis, K. Vishi, M.D. Zych, A. Jøsang, The impact of quantum computing on present 

cryptography (2018). arXiv:1804.00200 
93. National Academies of Sciences Engineering, Medicine, et al., Quantum computing: progress 

and prospects (2019) 
94. J. Tao, R. Zhang, Y. Zhu, DNA Computing Based Genetic Algorithm (Springer, Berlin, 2020) 
95. Hafiz Md. Hasan Babu, “Quantum Computing: A Pathway to Quantum Logic Design”, IOP 

(Institute of Physics) Publishing, 2020, Bristol, UK 
96. Hafiz Md. Hasan Babu, “Multiple-Valued Computing in Quantum Molecular Biology”, Volume 

I, CRC Press, 2023, USA 
97. Hafiz Md. Hasan Babu, “Multiple-Valued Computing in Quantum Molecular Biology”, Volume 

II, CRC Press, 2023, USA 
98. Hafiz Md. Hasan Babu, “Reversible and DNA Computing,” Wiley Publishers, 2021, UK 
99. Hafiz Md. Hasan Babu, “VLSI Circuits and Embedded Systems,âŁž CRC Press (A Publication 

of Taylor & Francis Group), July 2022, USA 
100. Md. Jahangir Alam, Guoqing Hu, Hafiz Md. Hasan Babu and Huazhong Xu, “Control Engi-

neering Theory and Applications,” CRC Press (A Publication of Taylor & Francis Group), 
September 2022, USA 

101. Hafiz Md. Hasan Babu, “DNA Logic Design: Computing with DNA”, World Scientific Pub-
lishing Company, May 2024, Singapore 

http://arxiv.org/abs/1804.00200


Index 

C 
Cache Memory, 54, 77, 92, 379, 381 
Configurable Logic Blocks (CLBs), 110 
Controlled NOT (CNOT), 214 

D 
Data Conversion, 289, 291 
Data Management, 377, 379 
DNA AND, 21, 22 
DNA computing, 245 
DNA NAND, 21 
DNA NOR, 20 
DNA NOT, 18 
DNA OR, 19 
DNA-quantum, 289, 291 
DNA XNOR, 25 
DNA XOR, 23 

E 
Exclusive OR (XOR), 252 

F 
Field Programmable Gate Array (FPGA), 

110, 132, 147 
Flip-flops, 111 
Full Adder, 231 
Full Subtractor, 217 

H 
Half Subtractor, 388, 390 
Heat Calculation, 211 
Heat Transfer, 275, 277 

L 
Look-Up Table (LUT), 111, 132, 148 

M 
Multiplexer, 111, 219, 253, 305, 307 
Multiplier, 264 

N 
NMR relaxation, 289, 291 
Nuclear Magnetic Resonance (NMR), 291, 

293 

O 
OR, 216 

P 
Photons, 276, 278 
Programmable Array Logic (PAL), 104, 127 

Programmable Logic Array (PLA), 100, 
124, 140, 141 

Programmable Logic Device (PLD), 100, 
123, 140 

Programmable Read-Only Memory 
(PROM), 51 

Q 
Quantum Accumulator, 163 
Quantum Arithmetic logic unit (ALU), 160, 

163 
Quantum Buses, 160 
Quantum Cache Memory, 377, 379 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer 
Nature Singapore Pte Ltd. 2025 
H. Md. Hasan Babu, Quantum Biocomputing in Quantum Biology Volume II, 
https://doi.org/10.1007/978-981-97-5349-9 

411 

https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9
https://doi.org/10.1007/978-981-97-5349-9


412 Index 

Quantum computing, 245 
Quantum Control unit (CU), 160 
Quantum decoder, 163 
Quantum-DNA, 289, 291 
Quantum flip-flops, 118 
Quantum Incrementor , 163 
Quantum Instruction Register, 163 
Quantum logic function, 118 
Quantum Multiplexers, 118, 163 
Quantum Program Counter, 163 
Quantum RAM, 160, 163 
Quantum Register, 160 

Qubit Cell, 36 

R 
Random-Access Memory (RAM), 30, 65, 81 

Read-Only Memory (ROM), 42, 67, 83 

S 
Speed Calculation, 245 


	Preface
	Acknowledgments
	Contents
	About the Author
	Acronyms
	List of Figures
	List of Tables
	1 Basic Operations in Quantum Computing  and Biocomputing
	1.1 Introduction
	1.2 Basic Gates in Quantum Computing
	1.2.1 Quantum Controlled NOT Gate
	1.2.2 Quantum Controlled-V Gate
	1.2.3 Quantum Controlled-V+ Gate

	1.3 Basic Operations in Quantum Computing
	1.3.1 Quantum OR Operation
	1.3.2 Quantum NOR Operation
	1.3.3 Quantum AND Operation
	1.3.4 Quantum NAND Operation
	1.3.5 Quantum XOR Operation
	1.3.6 Quantum XNOR Operation

	1.4 Basic Operations in Biocomputing
	1.4.1 DNA NOT Operation
	1.4.2 DNA OR Operation
	1.4.3 DNA NOR Operation
	1.4.4 DNA NAND Operation
	1.4.5 DNA AND Operation
	1.4.6 DNA XOR Operation
	1.4.7 DNA XNOR Operation

	1.5 Summary

	Part I Memory Devices in Quantum Biocomputing
	2 Memory Devices in Quantum Computing
	2.1 Introduction
	2.2 Quantum Random-Access Memory
	2.2.1 History
	2.2.2 Basic Definition
	2.2.3 Advantages
	2.2.4 Disadvantages
	2.2.5 Basic Functions
	2.2.6 Block Diagram
	2.2.7 Design Architecture of a 4-to-1 RAM
	2.2.8 Working Principle of a Quantum RAM Memory
	2.2.9 Applications

	2.3 Quantum Read-Only Memory
	2.3.1 History
	2.3.2 Basic Definition
	2.3.3 Advantages
	2.3.4 Disadvantages
	2.3.5 Basic Functions
	2.3.6 Block Diagram
	2.3.7 Circuit Architecture
	2.3.8 Working Principle
	2.3.9 Applications

	2.4 Quantum Programmable Read-Only Memory
	2.4.1 History
	2.4.2 Basic Definition
	2.4.3 Advantages
	2.4.4 Disadvantages
	2.4.5 Basic Functions
	2.4.6 Block Diagram
	2.4.7 Circuit Architecture
	2.4.8 Working Principle
	2.4.9 Applications

	2.5 Quantum Cache Memory
	2.5.1 Operations
	2.5.2 Basic Definition
	2.5.3 Advantages
	2.5.4 Disadvantages
	2.5.5 Basic Functions
	2.5.6 Block Diagram
	2.5.7 Design Architecture of Quantum RAM
	2.5.8 Circuit Architecture of Quantum Cache Memory
	2.5.9 Working Principle
	2.5.10 Applications

	2.6 Summary

	3 Memory Devices in Quantum-DNA Computing
	3.1 Introduction
	3.2 Quantum-DNA Random-Access Memory
	3.2.1 Block Diagram
	3.2.2 Working Principle

	3.3 Quantum-DNA Read-Only Memory
	3.3.1 Block Diagram
	3.3.2 Design Procedure
	3.3.3 Working Principle

	3.4 Quantum-DNA Programmable Read-Only Memory
	3.4.1 Block Diagram
	3.4.2 Design Procedure
	3.4.3 Working Principle

	3.5 Quantum-DNA Cache Memory
	3.5.1 Block Diagram
	3.5.2 Circuit Architecture and Working Principle

	3.6 Applications
	3.7 Summary

	4 Memory Devices in DNA-Quantum Computing
	4.1 Introduction
	4.2 DNA-Quantum Random-Access Memory
	4.2.1 Block Diagram
	4.2.2 Working Principle and Circuit Architecture

	4.3 DNA-Quantum Read-Only Memory
	4.3.1 Design Procedure
	4.3.2 Working Principle

	4.4 DNA-Quantum Programmable Read-Only Memory
	4.4.1 Design Procedure
	4.4.2 Working Principle

	4.5 DNA-Quantum Cache Memory
	4.5.1 Design Procedure
	4.5.2 Working Principle

	4.6 Summary

	Part II Programmable Devices in Quantum Biocomputing
	5 Programmable Devices in Quantum Computing
	5.1 Introduction
	5.2 Quantum Programmable Logic Array
	5.2.1 Block Diagram
	5.2.2 Circuit Architecture
	5.2.3 Working Principle
	5.2.4 Applications

	5.3 Quantum Programmable Array Logic
	5.3.1 Block Diagram
	5.3.2 Circuit Architecture
	5.3.3 Working Principle
	5.3.4 Advantages

	5.4 Quantum Field Programmable Gate Arrays
	5.4.1 Block Diagram
	5.4.2 Design Architecture of Basic Components
	5.4.3 Circuit Architecture
	5.4.4 Working Principle
	5.4.5 Applications

	5.5 Quantum Complex Programmable Devices
	5.5.1 Block Diagram
	5.5.2 Circuit Architecture
	5.5.3 Working Principle
	5.5.4 Applications

	5.6 Summary

	6 Programmable Devices in Quantum-DNA Computing
	6.1 Introduction
	6.2 Quantum-DNA Programmable Logic Array
	6.2.1 Block Diagram
	6.2.2 Circuit Architecture
	6.2.3 Working Principle

	6.3 Quantum-DNA Programmable Array Logic
	6.3.1 Block Diagram
	6.3.2 Circuit Architecture
	6.3.3 Working Principle

	6.4 Quantum-DNA Field Programmable Gate Arrays
	6.4.1 Block Diagram
	6.4.2 Circuit Architecture
	6.4.3 Working Principle

	6.5 Quantum-DNA Complex Programmable Devices
	6.5.1 Circuit Architecture
	6.5.2 Working Principle

	6.6 Applications
	6.7 Summary

	7 Programmable Devices in DNA-Quantum Computing
	7.1 Introduction
	7.2 DNA-Quantum Programmable Logic Array
	7.2.1 Block Diagram
	7.2.2 Circuit Architecture
	7.2.3 Working Principle

	7.3 DNA-Quantum Programmable Array Logic
	7.3.1 Block Diagram
	7.3.2 Circuit Architecture
	7.3.3 Working Principle

	7.4 DNA-Quantum Field Programmable Gate Arrays
	7.4.1 Block Diagram
	7.4.2 Circuit Architecture
	7.4.3 Working Principle

	7.5 DNA-Quantum Complex Programmable Devices
	7.5.1 Circuit Architecture
	7.5.2 Working Principle

	7.6 Summary

	Part III Nano-Processor in Quantum Biocomputing
	8 Quantum Nanoprocessor
	8.1 Introduction
	8.2 Basic Definitions
	8.3 Block Diagram of a Complete Quantum Nanoprocessor
	8.4 Basic Components of Quantum Nanoprocessor
	8.4.1 Design Procedure of Quantum RAM
	8.4.2 Design Procedure of Quantum Instruction Register
	8.4.3 Design Procedure of Quantum Program Counter
	8.4.4 Design Procedure of Quantum Incrementer Circuit
	8.4.5 Design Procedure of Quantum Decoder
	8.4.6 Design Procedure of Quantum Multiplexer
	8.4.7 Design Procedure of Quantum ALU
	8.4.8 Design Procedure of Quantum Accumulator

	8.5 Applications
	8.6 Summary

	9 Quantum-DNA Nanoprocessor
	9.1 Introduction
	9.2 Basic Definitions
	9.3 Block Diagram of Quantum-DNA Nanoprocessor
	9.4 Basic Components of Quantum-DNA Nanoprocessor
	9.4.1 Design and Working Principles of Quantum RAM
	9.4.2 Design and Working Principles of DNA CPU
	9.4.3 DNA Instruction Register
	9.4.4 DNA Program Counter
	9.4.5 DNA Incrementer Circuit
	9.4.6 DNA Decoder
	9.4.7 DNA Multiplexer
	9.4.8 DNA ALU
	9.4.9 Accumulator
	9.4.10 Quantum Cache Memory
	9.4.11 DNA Cache Memory
	9.4.12 NMR at 0-K for Converting DNA Sequence to Qubit in DNA-Quantum Nanoprocessor
	9.4.13 NMR Relaxation at 0-K for Converting Qubit to the DNA Sequence in Quantum-DNA Nanoprocessor
	9.4.14 Heat Transfer Circuit

	9.5 Applications
	9.6 Summary

	10 DNA-Quantum Nano Processor
	10.1 Introduction
	10.2 Basic Definitions
	10.3 Block Diagram of DNA-Quantum Nano Processor
	10.4 Basic Components of DNA-Quantum Nanoprocessor
	10.4.1 DNA RAM

	10.5 Quadrupole Ion Trap
	10.6 Paul Trap Ion
	10.7 Design Procedure and Working Principle of DNA Cache …
	10.8 Applications
	10.9 Summary

	Part IV Heat, Speed, and Data Related Issues in Quantum Biocomputing
	11 Heat Calculation
	11.1 Introduction
	11.2 Basic Definitions for Heat Calculation in Quantum Circuits
	11.2.1 Quantum NOT Operation
	11.2.2 Quantum CNOT Operation
	11.2.3 Quantum AND Operation
	11.2.4 Quantum OR Operation

	11.3 Heat Calculation for Quantum Operational Circuits
	11.3.1 Quantum Full Subtractor
	11.3.2 Quantum 3-Qubit Even Parity Qubit Checker
	11.3.3 Quantum 3-to-1 Multiplexer

	11.4 Basic Definitions for Heat Calculation in DNA Circuits
	11.5 Heat Calculation in DNA Circuits
	11.5.1 DNA Full Subtractor
	11.5.2 DNA Full Adder
	11.5.3 DNA Multiplication Circuit

	11.6 Heat Calculation in Quantum-DNA Circuits
	11.6.1 Quantum-DNA Full Adder

	11.7 Heat Calculation in DNA-Quantum Circuits
	11.7.1 DNA-Quantum Full Adder

	11.8 Applications
	11.9 Summary

	12 Speed Calculation
	12.1 Introduction
	12.2 Speed Calculation for Quantum Operations
	12.2.1 Speed Calculation in Quantum Operational Circuits

	12.3 Speed Calculation for DNA Operations
	12.4 Speed Calculation in DNA Operational Circuits
	12.4.1 DNA Full Subtractor
	12.4.2 DNA Full Adder
	12.4.3 DNA Multiplication Circuit

	12.5 Speed Calculation in Quantum-DNA Circuits
	12.5.1 Full Subtractor at 0K
	12.5.2 Full Adder at 0K
	12.5.3 Multiplier at 0K
	12.5.4 Multiplexer at 0K

	12.6 Speed Calculation in DNA-Quantum Circuits
	12.6.1 3-Qubit Parity Qubit Checker at 0K
	12.6.2 Full Subtractor at 0K
	12.6.3 Full Adder at 0K

	12.7 Applications
	12.8 Summary

	13 Heat Transfer
	13.1 Introduction 
	13.2 Quantum Heat Conductance Circuit
	13.2.1 Design Procedure
	13.2.2 Working Principle

	13.3 Heat Transfer in Quantum-DNA Logic Operations
	13.3.1 Heat Transfer from Quantum AND Operation to DNA NOT Operation
	13.3.2 Heat Transfer from Quantum OR Operation to DNA NOT Operation
	13.3.3 Heat Transfer from Quantum XOR Operation to DNA NOT Operation

	13.4 Heat Transfer in Quantum-DNA Circuits
	13.4.1 Heat Transfer in Quantum-DNA Full Adder Circuit
	13.4.2 Heat Transfer in Quantum-DNA Multiplier Circuit

	13.5 Heat Transfer in DNA-Quantum Circuits
	13.6 Applications
	13.7 Summary

	14 Data Conversion Mechanisms
	14.1 Introduction
	14.2 Data Conversion in Quantum-DNA Circuits
	14.2.1 NMR Relaxation at Room Temperature
	14.2.2 NMR Relaxation at 0K
	14.2.3 Trapped Ion

	14.3 Data Conversion in DNA-Quantum Circuits
	14.3.1 Nuclear Magnetic Resonance
	14.3.2 Structure of NMR
	14.3.3 Working Procedure of NMR
	14.3.4 DNA Sequence to Qubits Using NMR
	14.3.5 NMR at 0K Using Cryogenic Probe
	14.3.6 Quadrupole Ion Trap

	14.4 Summary

	15 Data Management Techniques
	15.1 Introduction
	15.2 Quantum Cache Memory
	15.2.1 D Flip-Flop
	15.2.2 Quantum One-Qubit Cache Memory
	15.2.3 Quantum Eight-Qubit Cache Memory

	15.3 Data Management in Quantum-DNA Circuits
	15.3.1 Data Management in Quantum-DNA Full Adder
	15.3.2 Data Management in Quantum-DNA Multiplier
	15.3.3 Data Management in Quantum-DNA Half Subtractor
	15.3.4 Data Management in Quantum-DNA Full Subtractor
	15.3.5 Data Management in Quantum-DNA Three-Qubit Parity Bit Checker

	15.4 Data Management in DNA-Quantum Circuits
	15.4.1 DNA Cache Memory to Control DNA to Quantum Data Flow
	15.4.2 DNA-Quantum Full-Adder Operation

	15.5 Applications
	15.6 Summary

	Appendix  Concluding Remarks
	  References
	

	Index

